
Models of Molecular Computing

Models of Molecular Computing
Proefschriftter verkrijging vande graad van Doctoraan de Universiteit Leiden,op gezag van de Rector Magni�cus Dr. D.D. Breimer,hoogleraar in de faculteit der Wiskunde enNatuurwetenschappen en die der Geneeskunde,volgens besluit van het College voor Promotieste verdedigen op woensdag 29 mei 2002te klokke 16.15 uurdoorNik�e van Vugtgeboren te Waspikin 1972

Promotiecommissie :Promotor: Prof. dr. G. RozenbergCo-promotor: Dr. H.J. HoogeboomReferent: Prof. dr. A. Salomaa (Turun Yliopisto, Finland)Overige leden: Prof. dr. G. Mauri (Universit�a degli Studi diMilano-Bicocca, Itali�e)Dr. Gh. P�aun (Institute of Mathematics of theRomanian Academy, Roemeni�e)Dr. L. Kari (University of Western Ontario, Canada)Dr. H.C.M. KleijnProf. dr. J.N. KokProf. dr. W.R. van Zwet

The work in this thesis has been carried out under the auspices of theresearch school IPA (Institute for Programming research and Algorithmics).ISBN 90-77017-67-4

voor Jurriaan

Contents
1 Introduction 132 Preliminaries 192.1 Sets, words and languages . 192.2 The Chomsky hierarchy . 202.3 Operations on languages . 232.4 Blind one-counter automata . 252.5 Context-free valence grammars 27I Splicing systems 293 De�nitions, examples and research topics 313.1 Non-iterated splicing . 323.2 Iterated splicing . 343.3 Restricted non-iterated splicing 383.4 Research topics . 404 String representations of splicing rules 414.1 Families of splicing relations . 424.1.1 LIN and CF splicing rules 424.1.2 FIN, REG, CS and RE splicing rules 434.2 Families of non-iterated splicing languages 444.3 Families of iterated splicing languages 464.4 Representations other than and 484.4.1 Splicing with FIN;REG;CS or RE rules 484.4.2 Splicing with LIN or CF rules 484.5 Summary . 495 Non-iterated splicing with regular rules 515.1 Unrestricted splicing . 515.2 Same-length splicing . 545.3 Self splicing . 547

8 CONTENTS5.4 Length-decreasing splicing . 575.5 Length-increasing splicing . 585.6 Summary . 626 Upper bounds for restricted non-iterated splicing 636.1 Same-length splicing . 646.2 Splicing in in or de mode . 656.3 Self splicing . 676.4 Summary . 71II Sticker systems 737 De�nitions, examples and research topics 757.1 Sticker systems . 757.2 Sticker languages . 777.3 Families of sticker languages . 817.4 Research topics . 848 Fair sticker languages 858.1 Fair sticker languages are bca-languages 858.2 bca-languages are codings of fair sticker languages 868.3 Summary . 929 A hierarchy of sticker families 939.1 A primitive `normal form' . 939.2 Primitive computations . 999.3 Fair computations . 1039.4 Primitive fair computations . 1049.5 Summary . 106III Forbidding and enforcing 10710 De�nitions, examples and research topics 10910.1 Forbidding . 10910.2 Enforcing . 11110.2.1 De�nitions and basic properties 11110.2.2 Evolving through enforcing 11210.2.3 A �nitary normal form 11310.3 Combining forbidding and enforcing 11610.3.1 De�nitions and examples 11610.3.2 The structure of computation in fe systems 11910.4 Research topics . 120

CONTENTS 911 Properties of forbidding sets and enforcing sets 12311.1 Forbidding sets . 12311.1.1 Finite forbidding sets 12311.1.2 Two useful normal forms 12411.1.3 Minimal forbidding sets 12611.1.4 Maximal forbidding sets 12711.1.5 A tree representation for consistent families 12811.2 Enforcing sets . 12811.2.1 Finite enforcing sets . 12811.2.2 Normal forms . 12911.2.3 Deterministic enforcing sets 12911.3 Summary . 13112 Sequences of languages in forbidding-enforcing families 13312.1 Converging sequences of languages 13312.2 Forbidding-enforcing families are closed sets 13412.3 Evolving sequences of languages 13512.4 The importance of �nite languages 13612.5 Summary . 138

PrefaceThis thesis comprises three parts, each of which discusses a model of (some as-pects of) molecular computing: splicing systems, sticker systems, and forbidding-enforcing systems. All three models are rooted in formal language theory. Thethree parts are preceded by an introduction, which discusses the basic structureof dna molecules as well as the origin of each of the models, and by preliminar-ies, which provide the main concepts of formal language theory that are usedthroughout the thesis.Each part starts with a chapter that de�nes the model discussed in thatpart, gives examples and basic submodels, and ends with a description of theopen problems that we intend to solve or the questions that we pose aboutcertain aspects of the model. Each of the other chapters is based on a paperpublished already, or on a manuscript. Here is the list of these six papers andtwo manuscripts.Splicing(1) The power of H systems: does representation matter? [HV98](2) A characterization of non-iterated splicing with regular rules [DHV01](3) Upper bounds for restricted splicing [HV02]Sticker systems(4) Fair sticker languages [HV00](�) A hierarchy of sticker families (manuscript, with H.J. Hoogeboom)Forbidding and enforcing(5) Forbidding and enforcing [EH+00](�) Properties of forbidding sets and enforcing sets (manuscript, withA. Ehrenfeucht, H.J. Hoogeboom and G. Rozenberg)(6) Sequences of languages in forbidding-enforcing families [EH+01]We describe now in more detail the correspondence between the chapters ofthis thesis and the papers and manuscripts listed above.Chapter 4 is essentially paper (1); we have only changed the layout a littleand added some explanations. 11

12 PREFACEChapters 5 and 6 result from a continuation of the research presented inpaper (2). In Chapter 5 we present a characterization of the family of unre-stricted non-iterated splicing languages generated by a linear initial languageand a regular set of rules. Extending this result, we prove that under certainconditions regular rule sets may be replaced by �nite rule sets, for unrestrictednon-iterated splicing and for several cases of restricted non-iterated splicing. InChapter 6 we determine upper bounds for the restricted splicing families thatwe discuss. This chapter is based on paper (3).Chapter 8 contains the part of paper (4) where we answered the ques-tion whether fair sticker languages are context-free languages (or even linearlanguages) by proving that each fair sticker language is accepted by a blindone-counter automaton and showed that these blind one-counter languages con-stitute a rather close upper bound for the fair sticker languages.In paper (4) we also proved a normal form for sticker systems: withoutchanging the sticker language it is always possible to replace the complemen-tarity relation by the identity. This normal form appears here in Chapter 7.In Chapter 9, which corresponds to manuscript (�), we show that every(fair) sticker language can be generated by a sticker system that can do onlyprimitive computations, provided that one is allowed to use a coding. Moreover,we compare the unrestricted sticker languages with the restricted versions ofsticker languages that we consider.Paper (5) is an overview of research done in the new �eld of forbidding-enforcing systems. It contains the results from the initial paper in that �eld([ER]) as well as some results that we obtained when searching for standardformal language properties of the newly de�ned systems (like normal forms,determinism versus non-determinism and such), and when investigating thetopological aspects of forbidding-enforcing families. The former research wasdescribed in manuscript (�), the latter in paper (6). In Chapters 10, 11 and 12we essentially give a considerably extended version of paper (5), where Chap-ter 11 corresponds to (�) and Chapter 12 to (6).During the years that I was a Ph.D. student, many people showed theirsincere interest in my work, the progress I made with it and my personal well-being. Of all those people I especially wish to mention the entire TheoreticalComputer Science group, which I found a very warm and friendly environ-ment to work in (gr, Joost, Jetty, Hendrik Jan, Tjalling, Jurriaan, Maurice,Rudy, Sebastian, Pier and Marloes), as well as Henk, Frans, Tero, Walter, Jean-nette, Siegfried, my family, especially Jurriaan, papa, mama, Kirsten, Godelief,Jeroen, tante Jo, oom Albert, Hans, Leida, Arjan, Ernst, and my landlady,mevrouw Vries.I also gratefully acknowledge support by LIACS and TUCS, that made itpossible for Jurriaan and me to work in Turku, Finland, during the rainy monthof August 1998.

Chapter 1Introductiondna molecules and various operations on them can be conveniently expressedas strings and operations on strings. Hence, many models of dna computationhave been formulated within formal language theory. We consider here threeformal language based models of molecular processes. Two of them, splicingsystems and sticker systems, were de�ned during the last 15 years, while thethird one is more recent: forbidding-enforcing systems.We will �rst describe the structure of dna, as well as the properties ofdna that have motivated splicing and sticker systems. Then the three modelsconsidered in this thesis are (informally) introduced.DNAOur description of dna (deoxyribonucleic acid) molecules and their manipu-lation is quite simpli�ed, but adequate for this thesis. A dna molecule (see,e.g., [PRS98]) is a chain of nucleotides. Each nucleotide consists of a sugar,a phosphate group and a base. Nucleotides can di�er from each other onlyin their bases, which come in four sorts: adenine, thymine, cytosine and gua-nine, abbreviated by a, t, c and g, respectively. The sugar has �ve carbonatoms, numbered 10 through 50, which serve as `attachment points' (referred toas `ends'): the phosphate group is attached to the 50 end and the base to the 10end. Two nucleotides can link through a bond between the (phosphate groupat the) 50 end of one nucleotide and the 30 end of the other. In this way, analternating sequence of sugars and phosphate groups forms the backbone of adna molecule, and this backbone has an orientation: on one end there is a free30 end and on the other end there is a free 50 end. A chain of nucleotides formedin this way is called a single stranded dna molecule or simply a strand, andis identi�ed by the order in which the bases appear on the backbone (usuallyread from the 50 end to the 30 end). Schematically such a single strand of dnamay be represented as follows. 13

14 INTRODUCTION50 30a a t g c g cAn important feature of dna is the so-called Watson-Crick complementarity,which is the phenomenon that the four bases actually come in two pairs: a pairswith t, and c pairs with g, meaning that a and t can form a (weak) hydrogenbond, and the same holds for c and g; moreover no other pairs can form a hy-drogen bond. This Watson-Crick complementarity allows two single strands toform a double stranded dna molecule: the two strands bind together (`anneal')through hydrogen bonds between complementary bases positioned opposite toeach other in the two strands. For example, if in a solution containing thesingle stranded molecule aatgcgc depicted above there is also a single strandedmolecule cttgcgca (also read from the 50 end to the 30 end), they may togetherform the partially double stranded molecule shown below.50 30a a t g c g c 5030 a c g c g t t cThis �gure illustrates also the second necessary condition for two single strandsto form a double strand: the orientation of one strand is opposite to the orienta-tion of the other. The single stranded pieces of dna at the ends of the partiallydouble stranded molecule are referred to as sticky ends, because they allowdna molecules to stick together to form longer molecules. Thus, e.g., if thereis another molecule in the solution beginning with aag or tt (at its 50 end),this molecule can anneal with the structure above. This annealing of singlestrands to form double strands, or of (partially) double strands to form larger(partially) double strands is spontaneous, and is referred to as self-assembly.Usually, in the illustrations the backbones are not depicted, and by con-vention the upper strand is written in the 50 to 30 direction (hence the lowerstrand in the 30 to 50 direction).Double stranded dna molecules can be cut in two partially double strandedpieces by restriction enzymes, which look for a speci�c recognition site and thencut the molecule somewhere within (or sometimes outside) this recognition site.We show this for the three restriction enzymes TaqI, SciNI and HhaI, usingthree sample molecules. The dashed boxes denote the recognition sites, andthe small black triangles denote the cutting points.a a t c g a gt t a g c t c? 6 -TaqI a a tt t a g c + c g a gt c

INTRODUCTION 15a g c g c c ct c g c g g g? 6 -SciNI a gt c g c + c g c c cg g gg c g c t tc g c g a a?6 -HhaI g c gc + c t tg c g a aSince TaqI and SciNI leave exactly the same sticky ends { i.e., both the base se-quences and the orientations of the overhangs are the same { the two moleculesabove that are cut by these two enzymes can recombine into two new molecules(or the two original molecules can be restored):a a t c g c c ct t a g c g g g a g c g a gt c g c t cSticky ends produced by HhaI, however, have a di�erent orientation, hencemolecules that are created through cleavage by HhaI cannot be combined inthis way with molecules resulting from cutting by TaqI or SciNI.The cutting by restriction enzymes and subsequent recombination into oldand new molecules described above is also called splicing.Abstracting from their biochemical properties, single dna strands can beseen as strings over the alphabet fa; c; g; tg. Fully double stranded moleculescan then be represented by two strings of which one is written on top of theother, as we did above, but in our notation we can also leave one of the strandsout, because the other one can be deduced using the Watson-Crick complemen-tarity. Since in this way molecules can be represented as strings, operations onmolecules, such as self-assembly or splicing, can be described through opera-tions on strings { this brings us into the framework of formal language theory.Splicing systemsSplicing systems are designed to model the cutting and recombination of dnamolecules in the presence of restriction enzymes ([Hea87]). Originally, splicingsystems were de�ned in such a way that the natural process of cutting andrecombination was described as accurately as possible: a �nite set of initialstrings representing the initial molecules could be spliced according to two�nite sets of splicing rules, in which each rule represented the recognition siteand cutting points of one restriction enzyme as a 3-tuple (u; x; v), where uxvis the recognition site and x is the overhang left after cutting (hence TaqIis represented as (t; cg; a)). One of these two sets consisted of splicing rulesthat leave a 50 overhang after cutting, the other one of splicing rules leaving

16 INTRODUCTIONa 30 overhang. Two initial strings u0uxvv0 and y0ywzz0 could be spliced onlyby using two rules (u; x; v) and (y;w; z) from the same set that left the sameoverhang, i.e., x = w. The resulting strings, apart from u0uxvv0 and y0yxzz0themselves, would then be u0uxzz0 and y0yxvv0.Later, two rules (u; x; v) and (y; x; z) representing compatible enzymes werecombined into a 4-tuple (ux; v; yx; z) or even into a string ux#v$yx#z (bothalso called a splicing rule). Here the $ symbol separates the recognition sitesand the # symbols indicate the cutting points. As the result of splicing u0uxvv0and y0yxzz0 using ux#v$yx#z only u0uxzz0 was considered, because one couldeasily obtain also y0yxvv0 by adding the symmetric rule yx#z$ux#v.Finally, several aspects in the de�nition of splicing systems were generalised:a splicing rule u1#u2$u3#u4 was no longer required to represent two enzymes(let alone two compatible enzymes), the alphabet was no longer restricted tofa; t; c; gg, it was no longer required that for each rule u1#u2$u3#u4 also thesymmetric rule u3#u4$u1#u2 be present, and the set of initial strings and theset of rules no longer had to be �nite. All these abstractions lead to a modelof splicing based on formal language theory, in which the e�ect of splicing setsof initial strings using sets of splicing rules can be investigated. In particular,the power of the splicing operation is studied as a function of the complexityof the set of initial strings and the set of rules.Sticker systemsAdleman ([Adl94]) uses the Watson-Crick complementarity to propose a bio-chemical implementation of an algorithm to solve the Hamiltonian Path Prob-lem: the question whether a given graph contains a path going through eachof its nodes exactly once (starting from a designated initial node, and endingin a designated terminal node). In Adleman's scheme nodes are representedby short dna strands, and edges are designed to match with the second half oftheir source node and the �rst half of their target node. We illustrate this fora very small example.13 24
--? 6	 1 : atcg2 : ctag3 : gcta4 : tgac 1! 2 : gcga1! 3 : gccg2! 3 : tccg3! 4 : atac4! 2 : tggaNow, when the strands representing the nodes and edges are placed in a solu-tion, paths in the graph are formed by self-assembly.a t c g g c t a t g a c c t a gg c c g a t a c t g g a1z }| { 3z }| { 4z }| { 2z }| {| {z }1!3 | {z }3!4 | {z }4!2

INTRODUCTION 17After that the Hamiltonian paths may be detected in the solution by a ratherinvolved biochemical selection process.Sticker systems are introduced as a model for the self-assembly phase ofAdleman's experiment ([KP+98]). A sticker system speci�es �nite sets of upperand lower `stickers' (single stranded molecules), and a �nite set of axioms (usedas a seed for the process joining upper and lower strands). The complementarityrelation is modelled by a binary relation on the alphabet. Roughly speaking,the language generated by the system consists of all strings formed by upperstickers for which an exactly matching (i.e., complementary) sequence of lowerstickers can be found.These sticker systems are generalised to sticker systems that have (partially)double stranded stickers, or axioms to which both to the right and to the leftstickers can be attached, etcetera. Furthermore, motivated by the wish to �nd amodel that is computationally complete, in addition to the unrestricted compu-tations described above, restricted computations are considered: for example,computations that are only valid if the number of upper stickers used equalsthe number of lower stickers used.The theory of sticker systems investigates the relationships between di�er-ent types of sticker systems as well as their relationship to various types ofgrammars and automata.Several other models of the use of self-assembly for computations are con-sidered in the literature, see, e.g., [WYS98] and [RW+98].Forbidding-enforcing systemsIn a completely di�erent kind of molecular (not necessarily dna) model bound-ary conditions are used to describe what can happen in a molecular system.We consider here two types of boundary conditions: forbidding and enforcing.Forbidding conditions say that if a certain group of components (i.e., parts ofmolecules) is present in the system, then the system will lose its functionality(e.g., an organism will die, or a molecular computation will go `the wrong way'){ hence such a combination of components is forbidden. Enforcing conditionssay that if a certain group of molecules is present in the system, then (as the re-sult of a molecular reaction) some other molecules will eventually be present inthe system. Hence the evolution of a system described by forbidding conditionsF and enforcing conditions E will proceed according to the reactions describedby E but restricted in such a way that none of the forbidden combinations fromF will be created.Such forbidding-enforcing systems, fe systems for short, are more `tolerant'in describing results of (molecular) computations than the standard grammat-ical models: one fe system describes a whole family of outcomes all of whichobey the forbidding and enforcing constraints of the system. Thus in the casethat we model the molecules by strings (as we do in this thesis), one fe system

18 INTRODUCTIONspeci�es a possibly in�nite family of languages. A language belongs to thisfamily if and only if it is consistent with the forbidding conditions and satis�esthe enforcing conditions { nothing else is required from the language. Intu-itively speaking, fe systems follow the rule \everything that is not forbiddenis allowed", while standard formal language theory (grammars and automata)follows the dual rule \everything that is not allowed is forbidden".Since the forbidding and enforcing conditions can be expressed by stringsand languages, we get again a formal language theoretic model (albeit nonstan-dard).

Chapter 2PreliminariesIn order to �x our notation, we recall some well-known formal language theoryconcepts that we need throughout this thesis. More details can be found in,e.g., [HU79], [RS97].2.1 Sets, words and languagesThe set of positive natural numbers is denoted by N, and the set of integers byZ. We write Zk, for some k � 1, for the set f(v1; : : : ; vk) j v1; : : : ; vk 2 Zg, andsimilarly Ak for an arbitrary set A. Elements of Zk, for any k � 1, are alsowritten as ~v, and the vector consisting of k 0's is written as ~0. We denote thelargest element of a �nite subset A of Z by max A.For two sets A and B, A � B denotes the inclusion of A in B, and A � Bdenotes the proper inclusion of A in B (i.e., additionally, A 6= B). By A�B wedenote the set consisting of all elements of A that are not elements of B. Weuse P(A) to denote the set consisting of all subsets of A, called the power setof A. We denote the empty set by ?, and the cardinality of a set A by #(A).We often notationally identify a singleton set with its element.An alphabet is a �nite set of symbols (letters), and a word (string) over analphabet � is a �nite sequence of letters from �. We denote the empty wordby �, the length of a word w by jwj, and the number of occurrences of a symbola in w by #a(w). The concatenation of two words x and y is denoted by x � yor simply xy.A language over � is a (possibly in�nite) set of words over �. The languageconsisting of all words over � is denoted by ��, and �+ denotes the language�� � f�g. A set of languages containing at least one language not equal to ?or f�g is also called a family of languages. For a language K and an integern � 0, Kj�n = fw 2 K j jwj � ng, and Kj>n = fw 2 K j jwj > ng. A sequenceof languages K1;K2; : : : for which K1 � K2 � : : : is called ascending.The set of pre�xes of a given word w 2 �� is de�ned as Pref (w) = fu 219

20 PRELIMINARIES�� j w = uv for a v 2 ��g, and the set of suÆxes as Suf(w) = fv 2 �� j w = uvfor a u 2 ��g.The following notions are frequently used in Part III. A word x 2 �� is asubword of a word y 2 ��, denoted x sub y, if y = uxv for some u; v 2 ��.We say that x is a subword of a language K if x sub y for some y 2 K. Theset of subwords of x is denoted by sub (x), and the set of subwords of K bysub (K), hence sub (K) = Sx2K sub (x). Note that, for two languagesK and L,K � sub (L) if and only if sub (K) � sub (L). A language K is called subwordfree if, for all x; y 2 K, x sub y implies x = y.For a language K we de�ne submax(K), the set of maximal subwords of K,to be fx 2 K j there is no y 2 K with x 6= y and x sub yg. Obviously, for everysubword free language K we have K = submax(K). Furthermore, note that forin�nite K it may be that submax(K) conveys little information concerning K,since for instance submax(a+) = ?.From the de�nitions it is clear that submax(K) � K � sub (K) for anylanguage K. Moreover, for a �nite or subword free language K it holds thatsub (submax(K)) = sub (K). This directly implies the following property: ifK and L are �nite or subword free languages, then sub (K) = sub (L) if andonly if submax(K) = submax(L). Furthermore, this property and the fact thatfor subword free K it holds that K = submax(K) together prove the followinglemma.Lemma 2.1 Let K and L be subword free languages.Then sub (K) = sub (L) if and only if K = L.2.2 The Chomsky hierarchyThe family of all �nite languages is denoted by FIN.A deterministic �nite automaton (dfa) is a 5-tuple A = (Q;�; Æ; q0; F),where Q is a �nite set of states, � is the input alphabet, Æ : Q��! Q is thetransition function, q0 is the initial state and F � Q is the set of �nal states.We extend Æ to a mapping from Q � �� to Q by de�ning Æ(p; �) = p andÆ(p; aw) = Æ(Æ(p; a); w), for p 2 Q, a 2 � and w 2 ��.A triple (w; p; z) 2 �� � Q � ��, called an instantaneous description, de-scribes the current situation of the automaton: wz is the input word, of whichw is already read and z still has to be read, and p is the current state. Whenthe automaton has a transition (p; a; q), i.e., Æ(p; a) = q, then an instantaneousdescription (w; p; az) can change into (wa; q; z), denoted (w; p; az) ` (wa; q; z).The re
exive and transitive closure of ` is denoted `�. The language acceptedby the �nite automaton A is de�ned as L(A) = fw 2 �� j (�; q0; w) `� (w; f; �)for a �nal state f 2 Fg, and is called a regular language.We use the notation REG for the family of regular languages.

PRELIMINARIES 21Useful variants of the dfa are: the non-deterministic �nite automaton, thathas a transition relation rather than a transition function, i.e., Æ � Q���Q;the �nite automaton that may have �-transitions (i.e., transitions of the form(p; �; q)); and the lazy �nite automaton, that allows transitions of the form(p;w; q), where w 2 ��. All these variants are known to be equivalent to thedfa, where two language-generating or language-accepting devices are calledequivalent if they de�ne the same language.A �nite automaton is usually represented graphically: the states are in-dicated by circles with the name of the state written in it, and a transition(p; a; q) is represented by an arrow from the circle containing p to the circlecontaining q, labelled by a. The initial state is indicated with a `)' symboland the �nal states by two concentric circles.A context-free grammar (cfg) is a 4-tuple G = (N;T; P; S), where N is a�nite set of non-terminals, T is a �nite set of terminals, P � N � (N [T)�is a �nite set of productions and S 2 N is the start symbol. A production(A;�) with A 2 N and � 2 (N [T)� is written as A ! �. If � equals �, theproduction is called a �-production.A string x is said to derive a string y in G, denoted x)G y (or x) y if Gis clear from the context), if x = wAz and y = w�z, for some w; z 2 (N [T)�,and there is a production A! � in P . The re
exive and transitive closure of) is denoted)�. A string x 2 (N [T)� with S)� x is called a sententialform of G. The context-free language generated by G is de�ned as L(G) =fw 2 T � j S)� wg.The family of all context-free languages is denoted by CF.A linear context-free grammar is a cfg in which each production has atmost one non-terminal in its right-hand side, i.e., every production is of theform X ! wY z or X ! w, with X;Y 2 N and w; z 2 T �. The languagegenerated by such a grammar is called a linear (context-free) language. We useLIN to denote the family of all linear languages.A cfg is called regular (or right-linear) if each production is of the formX ! wY or X ! w, with X and Y non-terminals and w 2 T �. It is calledregular because its derivations correspond to paths from the initial to a �nalstate in a lazy �nite automaton. Indeed, the regular cfg's generate exactly theregular languages.The machine counterpart of the context-free grammar is the pushdown au-tomaton (pda). A pda is essentially a �nite automaton with an external storagedevice: a stack. Depending on the current state and input symbol and on thetop symbol on the stack, the pda moves to another state and replaces the topstack symbol by a �nite number of stack symbols.A linear bounded automaton (lba) is an extension of a �nite automaton,in the sense that it may move back and forth on its input and even overwrite(input) symbols with other symbols. It is called linear bounded because it is

22 PRELIMINARIESnot allowed to use more of the input tape than the part that contains the inputstring. For that purpose the start and end of the input string are marked withtwo (di�erent) special symbols.Formally, an lba is an 8-tuple A = (Q;�;�; Æ;�;�; q0; F), where Q isthe �nite set of states, � � � is the input alphabet, � is the tape alphabet,�;� 2 �, with � 6= �, are the left and right endmarkers, respectively, q0 2 Qis the initial state, and F � Q is the set of �nal states. The transition relationÆ is a �nite subset of Q� ��Q� �� fL;R;Ng. An element (p; a; q; b; r) of Æis interpreted as follows: when A is in state p and reads the symbol a it maychange its state to q, overwrite a with b and go to the previous (if r = L) orthe next (if r = R) symbol on the tape, or stay at the same position (if r = N).Furthermore, the following requirements must be satis�ed: a = � if and onlyif b = �; if a = � then r 6= L; a = � if and only if b = �; if a = � then r 6= R.The language accepted by an lba consists of all input words for which, whenstarting in q0, the lba can reach a �nal state. It is called a context-sensitivelanguage, and the family of context-sensitive languages is denoted by CS.An lba can simulate the productions of a cfg on a `second track' of its inputtape, thereby providing a proof that CF � CS. This second track is `created'by using symbols consisting of two components, of which the �rst is the oldsymbol and the second is the symbol on the corresponding position of thesecond track. The lba writes the start symbol of the cfg under considerationon its second track and then repeatedly chooses one of the non-terminals onthe second track and rewrites it according to an applicable production, whileshifting the symbols on the second track if necessary. Such a simulation ofa derivation of a word w by a cfg can be done within the part of the inputtape that contains w, because if a cfg does not have �-productions, then thesentential forms in the derivation of w by this cfg never need to be longerthan w, and for every cfg with �-productions an equivalent (modulo �) cfgwithout �-productions can be constructed.At the top of the automata hierarchy we have the Turing machine (tm). Itis a generalisation of the lba in the sense that it is allowed to use an in�nitelylong input tape to carry out its computations, instead of only the part of thetape where the input word is.Formally, a tm is a construct M = (Q;�;�; Æ; q0; B; F), where Q;�;�; q0and F are as for the lba, Q\� = ?, Æ is a subset ofQ���Q���fL;R;Ng, andB 2 � is the blank symbol, representing an empty cell on the tape. The currentsituation on the tape of a tm is described by an instantaneous description xqywith x; y 2 �� and q 2 Q. Here x contains the contents of the tape immediatelyto the left of the head, starting with the leftmost symbol that is not B, the headis on the �rst symbol of y, and y contains everything to the right of the head,up to and including the rightmost symbol that is not a blank. The languageaccepted by a tm is de�ned similar to the language accepted by an lba, and is

PRELIMINARIES 23called a recursively enumerable language. The family of recursively enumerablelanguages is denoted by RE.The families FIN, REG, LIN, CF, CS and RE are said to form the Chomskyhierarchy. It is indeed a hierarchy because FIN � REG � LIN � CF � CS � RE.2.3 Operations on languagesA homomorphism is a function from � to ��, for alphabets � and �, assigningto each symbol in � a string over �. It is called �-free if it maps symbolsin � to non-empty strings over �. A homomorphism h can be extended to afunction from �� to �� as follows: h(�) = �, and h(ax) = h(a)h(x), for a 2 �and x 2 ��.A letter to letter homomorphism is called a coding. For a language familyF , we use COD(F) to denote the family of codings of languages in F , wherethe coding h of a language L is de�ned as h(L) = fh(x) j x 2 Lg.For a language L and a string w we de�ne the left-quotient of L by w as theset f x j wx 2 L g. The (right-)quotient of two languages L1 and L2, denotedL1=L2, is de�ned as the set fx j there exists y in L2 such that xy is in L1g.The shu�e of a language K � �� with a symbol c is de�ned as fucv j uv 2K for some u; v 2 ��g, for an alphabet �. Substitution with regular sets isde�ned by a mapping from � into regular subsets of ��, for alphabets � and�. A �nite-state transducer (fst)
 = (Q;�;�; Æ; q0; F) is a non-deterministic�nite-state automaton with additional output, i.e., Q;�; q0 and F are as de�nedfor �nite automata, � is the output alphabet, and Æ is a �nite set of transitionsof the form (p; a; w; q) 2 Q � (� [f�g) � �� � Q. Using such a transition,the machine may change from state p into state q, while reading a on its inputand writing the string w to its output. In the literature such a transducer isalso called `a-transducer' or `rational transducer'. The fst de�nes a relation in�����, called an fst mapping or a �nite-state transduction. If the transitionrelation of the fst is in Q� (� [f�g)��+ �Q, then the corresponding fstmapping is called non-erasing.A �nite-state transducer that is not allowed to read � (and at the same timewrite a (non-empty) string to the output), i.e., an fst with transition relationÆ � Q� ���� �Q, is called a generalised sequential machine (gsm).Note that, for instance, homomorphisms, intersection with regular sets, andquotient with symbols or regular sets are special cases of the gsm mapping.The e�ect of an fst mapping can also be achieved by the combination ofan (arbitrary) inverse homomorphism, intersection with a regular set and ahomomorphism. In the case of a non-erasing fst mapping the homomorphismmay be assumed to be �-free. The inverse homomorphism is used to `guess' atransition (p; a; w; q) of the fst for each symbol a in the input, the intersection

24 PRELIMINARIESwith a regular set guarantees that the sequence of transitions correspondingto the input word obtained in this way forms indeed a path from the initialstate to a �nal state of the fst, and the homomorphism then translates eachtransition (p; a; w; q) in this path to w, thus forming the output.A family of languages F is said to be closed under a given n-ary operationon languages if whenever this operation is applied to n languages from F ,the result is again a language in F . We summarize some well-known closureproperties of the families in the Chomsky hierarchy in Table 2.1. Here weuse `+' to denote closure and `�' to denote non-closure of a family under anoperation. FIN REG LIN CF CS REconcatenation with symbols + + + + + +concatenation + + { + + +non-erasing fst mapping { + + + + +fst mapping { + + + { +non-erasing gsm mapping + + + + + +gsm mapping + + + + { +�-free homomorphism + + + + + +homomorphism + + + + { +inverse homomorphism { + + + + +intersection with regular sets + + + + + +quotient with symbols + + + + + +shu�e with symbols + + + + + +substitution with regular sets { + + + { +union + + + + + +Table 2.1: Some closure properties of the Chomsky familiesA family of languages that is closed under �-free homomorphisms, inverse ho-momorphisms and intersection with regular languages is also called a trio;equivalently, a trio is closed under non-erasing fst mappings. When the �-free homomorphisms may be replaced by arbitrary homomorphisms, the fam-ily is called a full trio. A trio is also sometimes called a faithful rational cone,while a full trio is called a rational cone. The Chomsky families REG, LIN,CF and RE are full trios, and CS is a trio. A (full) trio that is additionallyclosed under union is called a (full) semi-afl, where afl is an acronym for Ab-stract Family of Languages. The theory of afl's and afa's (Abstract Familiesof Automata) concerns itself with common properties of families of languages(see, e.g., [GG69, Gin75]), and the relation between properties of automata andproperties of the families of languages they de�ne.

PRELIMINARIES 252.4 Blind one-counter automataThe following type of automaton will be used in Part II.A blind one-counter automaton (bca) is a �nite-state device equipped withan external memory (the `counter') that contains an integer value which may beincremented and decremented by the automaton. It is called blind because theautomaton cannot test its counter value during the computation, i.e., it maynot check whether its counter value is zero and act according to the outcomeof this test.Formally, a bca is a 5-tuple B = (Q;�; Æ; q0; F), where Q, �, q0 and Fare as for �nite automata, and Æ � Q � � � f�1; 0; 1g � Q is a �nite set ofinstructions (or transitions).An instantaneous description of B is an element of Q � �� � Z. For twoinstantaneous descriptions (p; ax; i) and (q; x; j), we write (p; ax; i) ` (q; x; j)if (p; a; "; q) 2 Æ and j = i + ". By `� we denote the re
exive and transitiveclosure of `.The (blind one-counter) language accepted by B consists of all strings forwhich the automaton in a computation on this string ends in a �nal state andat the same time has counter value zero. It is de�ned as L(B) = fx 2 �� j(q0; x; 0) `� (f; �; 0) for some f 2 Fg. The family of all languages accepted byblind one-counter automata (bca-languages) is called 1BCA.The blind one-counter automaton can be `implemented' on a more com-monly known device: the stack of a pushdown automaton may act as a counter.Consequently 1BCA � CF. Since the context-free language fw 2 fa; bg� j#a(w) = #b(w) and #a(x) � #b(x) for every pre�x x of wg is not in 1BCA(see [Gre78, Theorem 3]), we even have 1BCA � CF.In contrast with the de�nition of bca given in [Gre78], we do not allow�-instructions, i.e., instructions of the form (p; �; "; q). However, these twode�nitions are equivalent, which can be explained as follows.From afa/afl theory it is known that if there is a language L that describesthe `acceptance behaviour' of a certain type of automaton that has an additionalstorage, then the family of languages generated by this kind of automatonwithout �-instructions equals the faithful rational cone generated by L, whilethe family of languages generated by this kind of automaton with �-instructionsequals the rational cone generated by L. For bca's it is clear that the possiblesuccessful instruction sequences are naturally modelled by the `two-sided Dycklanguage' D�1 = fw 2 fa; bg� j #a(w) = #b(w)g, where a and b representaddition of +1 and �1, respectively. Hence 1BCA equals Cf (D�1), the faithfulrational cone generated by D�1, and the family of languages generated by bca'sthat can have �-instructions is equal to C(D�1), the rational cone generatedby D�1. In [Lat79, Proposition II.11] it is proved (as a special case of a moregeneral result) that Cf (D�1) = C(D�1). Hence the bca's with �-instructions areequivalent to the bca's without �-instructions.

26 PRELIMINARIESWe give now a more detailed explanation of the equivalence of 1BCA andthe faithful rational cone generated by D�1 (i.e., we explain the idea behindthe afa/afl result used above). A bca B can be seen as a �nite-state device
 mapping input strings to strings over fa; bg according to the instructionsexecuted during the computation. The input is accepted precisely when theoutput belongs to D�1. Hence for each transition (p; c; �; q) of B,
 has a tran-sition (p; c; �; q), where � = a if � = +1, � = b if � = �1 and � = � if � = 0.Furthermore, c 6= � since B does not have �-transitions, hence
 is a gsm (anarbitrary one, since � may be �) with an extra acceptance criterium. Clearlyx 2 L(B) if and only if
(x) \D�1 6= ?.Now let a �nite-state device � be constructed from
 by giving � a transition(p; �; c; q) for each transition (p; c; �; q) of
. Then � is a non-erasing �nite-state transducer, because � may be � but c may not. Moreover, since the onlydi�erence between
 and � is that the roles of input and output have beeninterchanged in every transition (the structure of the underlying automaton isthe same), it holds that
(x)\D�1 6= ? if and only if x 2 �(D�1). Consequently1BCA � f�(D�1) j � is a non-erasing �nite-state transducerg. Conversely, everynon-erasing fst with input alphabet fa; bg can be converted into a bca without�-transitions, following a procedure similar to the one described above. Hence1BCA = f�(D�1) j � is a non-erasing fstg, and according to Corollary 1 toTheorem 3.2.1 from [Gin75], the latter family equals the smallest trio containingD�1, which is also called the faithful rational cone generated by D�1 . In otherwords, the family 1BCA is equal to the smallest language family that containsD�1 and is closed under �-free homomorphisms, inverse homomorphisms andintersection with regular languages.The equivalence of the family of languages generated by bca's that can have�-instructions and C(D�1), the rational cone generated by D�1, can be shown ina similar way (but now
 and � are arbitrary fst's instead of a gsm and a non-erasing fst, respectively, and the �-free homomorphisms above are replaced byarbitrary homomorphisms).From the discussion above we conclude that 1BCA is a principal rationalcone (i.e., a rational cone generated by a single language), and in particularthat 1BCA is closed under codings (being a special case of a homomorphism),left-quotient with strings (which can be done by a gsm), and union (using aconstruction similar to the one proving closure of REG under union). Becauseof the latter property 1BCA is also a full principal semi-afl.Blind one-counter automata were also studied as `integer weighted �niteautomata' in [HH99] and as `additive regular valence grammars (over Z)' in[P�au80] (see also [FS97]). In these devices the instructions (productions) areassigned an integer value, and one considers only computations (derivations)for which these values add to 0.In the next section we consider a generalisation of the bca, the context-freevalence grammar over Zk, that we need in Chapter 6. Both these concepts,

PRELIMINARIES 27bca's and valence grammars, are also investigated in [Hoo02].2.5 Context-free valence grammarsA context-free valence grammar over Zk, for some k � 0, is a context-free gram-mar in which each production has a vector from Zk associated to it. Derivationsof context-free valence grammars are de�ned exactly as for normal context-freegrammars, but now a derivation is only valid if the (componentwise) sum ofthe valences of the used productions is ~0.Formally, a context-free valence grammar (over Zk) is a 4-tupleG = (N;T;R;S) with N;T and S as for a normal cfg, and R � N � (N [T)� � Zk. Anelement (A;�;~r) of R is written as (A ! �;~r). A ! � is the underlyingproduction and ~r is the valence of the production.The context-free valence language over Zk generated by G is de�ned asL(G) = fw 2 T � j (S;~0))� (w;~0)g, where (wAz;~v)) (w�z;~s) if and only ifthere is a production A! � with valence ~r in R and ~s = ~v + ~r.For each k � 0, we denote the family of context-free valence languages overZk by CF(Zk). We will sometimes abbreviate the term `context-free valencegrammar (language) over Zk' to simply `valence grammar (language)'.As an aside, note that blind counter automata with k counters, for k � 0,can also be seen as regular valence grammars over Zk.Clearly, a context-free valence grammar over Z0 is a normal context-freegrammar, i.e., CF = CF(Z0). Moreover, we have CF(Zk) � CF(Zk+1) for eachk � 0.Similar to the case of lba's simulating derivations of cfg's, an lba cansimulate the derivations of a given context-free valence grammar over Zk, forsome k � 0. For that we use the fact that for every valence grammar anequivalent (modulo �) valence grammar in Chomsky normal form can be con-structed, which means that each production in the underlying cfg is of theform A ! BC or A ! a, for A;B;C non-terminals and a a terminal symbol(see [FS00, Theorem 5.1]; actually, in that theorem there are also restrictionson the valences, but those are not important to us here). In particular, a cfg inChomsky normal form has neither �-productions nor unit productions (whichare of the form A ! B). Furthermore, we need a means to keep track of thevalues of the counters. The latter can be done by using an extra track of the in-put tape of the lba for each counter, and by observing that, for a given valencegrammar, there is a maximum amount mi that can be added to (or subtractedfrom) the ith counter (0 � i � k) during the application of a production, hencefor an input word of length n the value of the ith counter becomes at most(2n�1)mi (here we again use the fact that the valence grammar is in Chomskynormal form). Thus, if necessary, the lba can count up to 2mi in each cell ofthe extra track corresponding to the ith counter. Hence for each k � 0, it holds

28 PRELIMINARIESthat CF(Zk) � CS.In the same way that context-free grammars are extended to context-freevalence grammars over Zk, for some k � 0, we can extend �nite-state trans-ducers to valence transducers over Zk (called Zk-transducers for short; themapping de�ned by such a transducer is called a Zk-transduction). Hence Zk-transducers are �nite-state transducers in which each transition has a valence,and a computation of such a Zk-transducer is valid if it follows a path from theinitial state to a �nal state and the valences along this path add to ~0.The application of a Z`-transduction to a valence language over Zk, forsome k; ` � 0, yields a valence language over Zk+`. This can be proved asfollows (see also [FS00, Theorem 4.18]), using a construction that is similar tothe `triple construction' that de�nes a cfg generating the intersection of thelanguages of a given context-free grammar and a given �nite automaton; thename `triple construction' comes from the fact that the non-terminals of thenew cfg are of the form [p; x; q], where p and q are states of the automatonand x is a non-terminal or a terminal of the original cfg.Let G = (N;T;R; S) be a valence grammar over Zk, and let � = (Q;�;�; Æ;q0; F) be a valence transducer over Z`. We describe now how to construct thedesired valence grammar H over Zk+`. We may assume that G is in Chomskynormal form. The structure of a derivation tree of H is almost the same asthat of the corresponding derivation tree of G, and on the way down from theroot to the leaves a path through the automaton � is guessed. This happens asfollows: the start symbol S0 of H makes sure that the path starts in the initialand ends in a �nal state, through the productions (S0 ! [q0; S; f];~0), for eachf 2 F . Then ([p;X; q] ! [p; Y; r][r; Z; q] ; (v1; : : : ; vk; 0; : : : ; 0)), where (X !Y Z; (v1; : : : ; vk)) 2 R, recursively re�nes the guessed path, until ([p;X; q] ![p; a; q]; (v1; : : : ; vk; 0; : : : ; 0)), for a production (X ! a; (v1; : : : ; vk)) 2 R,terminates the derivation of G. Now ([p; a; q] ! w; (0; : : : ; 0; r1; : : : ; r`)), fora transition (p; a; w; q) with valence (r1; : : : ; r`) of � , guarantees that indeed apath through � has been generated and performs the transduction de�ned by� . Note that the additions to the ` counters of � may happen in a di�erentorder than when the transduction de�ned by � is applied directly, because thisorder is now dependent on the derivation of H. Since addition is commutative,this is not a problem.

Part ISplicing systems

29

Chapter 3De�nitions, examples andresearch topicsAnalogous to the splicing of two molecules with the help of restriction enzymesto produce another molecule (see Chapter 1), two strings x1u1v1y1 and x2u2v2y2can be spliced according to a splicing rule (u1; v1; u2; v2) to give the stringx1u1v2y2: x1 u1 v1 y1x2 u2 v2 y2De�nition 3.1 A splicing rule over an alphabet V is an element of (V �)4. Forsuch a rule r = (u1; v1; u2; v2) and strings x; y; z 2 V � we write(x; y) `r z i� x = x1u1v1y1; y = x2u2v2y2 andz = x1u1v2y2; for some x1; y1; x2; y2 2 V �: 2The string z is said to be obtained by splicing the strings x and y using therule r; x is called the �rst term of the splicing, and y the second term.A splicing system consists of an initial language, modelling the contentsof a tube of dna, and a set of rules, modelling the set of available restrictionenzymes.De�nition 3.2 A splicing system (or H system) is a triple h = (V;L;R) whereV is an alphabet, L � V � is the initial language and R � (V �)4 is a set ofsplicing rules, the splicing relation. 231

32 SPLICING SYSTEMSIn the literature, splicing rules are usually represented as strings rather than4-tuples: a splicing rule r = (u1; v1; u2; v2) is given as the string (r) =u1#v1$u2#v2 (# and $ are special symbols not in V), i.e., is a mappingfrom (V �)4 to V �#V �$V �#V �, that gives a string representation of each splic-ing rule. We extend in the natural way to a mapping from sets of splicingrules to languages. The name of this mapping is suggested by a more graphicalnotation for the splicing rule r, that is used in [PRS96a]:u1 v1u2 v2and by the way the diagram is then read to get the u1#v1$u2#v2 notation.These three ways to represent splicing rules are all useful: the representation by4-tuples is `safe' whereas the string representation may cause problems, as weexplain in Chapter 4; the string representation, however, enables us to measurethe complexity of a set of rules by determining its position in the Chomskyhierarchy; and the representation by diagram may be easier to read than theother two.Let F1 and F2 be families of languages. A splicing system with L 2 F1and (R) 2 F2 is said to be of (F1;F2) type. Accordingly, we will sometimeswrite, for instance, `regular set of splicing rules' when we mean a set of splicingrules of which the -representation is a regular language.In natural splicing, one splicing can yield both x1u1v2y2 and x2u2v1y1.The formal language variant of this kind of splicing is called 2-splicing and isinvestigated in, for instance, [PRS98, Chapter 8]. Note that the splicing modelwe consider here can simulate 2-splicing by adding for each rule (u1; v1; u2; v2)also the symmetric rule (u2; v2; u1; v1).3.1 Non-iterated splicingOne way to look at the splicing operation is to see it as a unary operation onlanguages. In other words, we can consider the language consisting of all wordsthat are the result of splicing any two words from a given initial language usingan appropriate splicing rule from a given set of splicing rules.De�nition 3.3 For a splicing system h = (V;L;R)�(h) = fz 2 V � j (x; y) `r z for some x; y 2 L and r 2 Rgis the (non-iterated splicing) language generated by h. 2As explained above, a splicing relation R is usually represented by a language(R), which gives the possibility to study the power of splicing with rules froma certain family of languages: for instance, what is the result of splicing linearinitial languages with linear splicing rules? We give some initial examples.

SPLICING SYSTEMS 33Example 3.1 Let h = (fa; b; c; dg; L;R) be a splicing system withL = fanbn � d j n � 1g [fd � bncn j n � 1g 2 LIN(R) = fa#bid$d#bic j i � 1g 2 LINClearly the �rst term of each splicing should be of the form akbkd and thesecond term of the form d bjcj , for some k; j � 1. Moreover, because of theform of the rules it must be that k = j. Thus all splicings are of the form (weindicate the cutting points with a `j')(ak j bkd ; d j bkck) ` akbkckHence the language generated by h is�(h) = fanbncn j n � 1g 2 CS� CF: 2Example 3.2 Let h = (fa; b; c; dg; L;R) be a splicing system withL = fanbn j n � 1g [fcndn j n � 1g 2 LIN(R) = f b#$#c g 2 FINThe language generated by h is�(h) = f an1bm1cm2dn2 j ni � mi � 1 (i = 1; 2) g 2 CF� LIN: 2Given two families of languages, F1 and F2, the family S(F1;F2) of non-iteratedsplicing languages, obtained by splicing F1 languages with F2 rules, is de�nedin the obvious way:S(F1;F2) = f�(h) j h = (V;L;R) with L 2 F1 and (R) 2 F2g:The families S(F1;F2) are investigated in [P�au96a] and [PRS96b], for F1 andF2 in the Chomsky hierarchy. An overview of these results is presented in[HPP97]. When S(F1;F2) was not found to be equal to one of the six Chomskyfamilies, the greatest lower bound F3 and the smallest upper bound F4 amongthem are given: F3 � S(F1;F2) � F4. These results are collected in Table 1from [HPP97], which we repeat here as Table 3.1. As an example, the optimalclassi�cation (within the Chomsky hierarchy) of splicing LIN languages withREG rules is LIN � S(LIN;REG) � CF.In Chapter 5 we will show that the lower and upper bounds given here forS(LIN;FIN) and S(LIN;REG) can be replaced by the characterization LIN�LIN,the family consisting of �nite unions of elements from LIN � LIN.Additionally we will consider the family S(F ; [1]) of languages obtainedby splicing F languages using rules of radius 1, i.e., for each splicing rule(u1; u2; u3; u4) we have juij � 1 for i = 1; 2; 3; 4.

34 SPLICING SYSTEMSF1 # F2 ! FIN REG LIN CF CS REFIN FIN FIN FIN FIN FIN FINREG REG REG REG; LIN REG;CF REG;RE REG;RELIN LIN;CF LIN;CFCF CF CFCS RERETable 3.1: The position of S(F1;F2) in the Chomsky hierarchy3.2 Iterated splicingAbove we have considered splicing as an operation on languages. Another wayto view the splicing operation is as a language generating mechanism: startingfrom a given initial language L and a given set of splicing rules R, the resultinglanguage is the smallest language that contains L and that is closed undersplicing with rules from R.De�nition 3.4 The (iterated splicing) language ��(h) generated by a splicingsystem h = (V;L;R) is de�ned by�0(h) = L�i+1(h) = �i(h) [�(�i(h)); i � 0��(h) = [i�0 �i(h) 2Note that in general �1(L) = L [�(L) 6= �(L).Similar to the non-iterated case, families of iterated splicing languages arede�ned byH(F1;F2) = f��(h) j h = (V;L;R) with L 2 F1 and (R) 2 F2gfor F1;F2 2 fFIN;REG; LIN;CF;CS;REg. A �rst notable result was obtained in[CH91], namely that iterated splicing of REG languages by FIN rules does notlead outside REG: H(REG;FIN) = REG. The families H(F1;F2) were furtherinvestigated in [Pix96], [P�au96a], [Pix95] and [P�au96b], and the results arelisted in Table 2 from [HPP97], which we repeat here as Table 3.2.Inspecting Table 3.2, we see that, e.g., splicing systems of (REG; LIN) typegenerate all regular languages but not all linear languages, and at least onenon-context-sensitive language. In the following example we give a splicingsystem of (REG; LIN) type that generates a non-context-free context-sensitivelanguage.

SPLICING SYSTEMS 35F1 # F2 ! FIN REG LIN CF CS REFIN FIN;REG FIN;RE FIN;RE FIN;RE FIN;RE FIN;REREG REG REG;RE REG;RE REG;RE REG;RE REG;RELIN LIN;CF LIN;RE LIN;RE LIN;RE LIN;RE LIN;RECF CF CF;RE CF;RE CF;RE CF;RE CF;RECS CS;RE CS;RE CS;RE CS;RE CS;RE CS;RERE RE RE RE RE RE RETable 3.2: The position of H(F1;F2) in the Chomsky hierarchyExample 3.3 Consider the splicing system h = (fa; bg; L;R) de�ned byL = ba+b 2 REG(R) = fbanb#$ b# anb j n � 1g 2 LINThen it is easily seen that �0(h) = ba+b, �1(h) = fbanb; banbanb j n � 1g,�2(h) = f(ban)jb j 1 � j � 4; n � 1g and in general �i(h) = f(ban)jb j 1 � j �2i; n � 1g for each i � 0. Consequently��(h) = f(ban)kb j n; k � 1g;which is clearly not context-free. In fact, ��(h) 2 CS � CF, since an lba cancompare each pair of two adjacent groups of a's (separated by a b) and in thisway check that all groups of a's are of the same length. 2An interesting problem suggested by the information from Table 3.2 is to �ndan algorithm to determine whether a regular language is in H(FIN;FIN). Ourattempt in this direction led to the following examples and to Theorem 3.1,that states that each regular language can be generated by a �nite splicingsystem provided that we let every string be preceded by a special marker. Thiswas already observed in [Hea98, remark following Theorem 3.1], but we repeatit here, and give a di�erent proof.Example 3.4 Let h = (fa; bg; L;R) be the splicing system de�ned byL = f� ; a ; b ; aa ; ba g 2 FINR = � b ab ; b b ; a b ; aa a � 2 FINThen ��(h) = fw 2 fa; bg� j w does not contain baag, which is a regularlanguage.The idea behind this is that we concatenate two (non-empty) words of whichwe already know that they do not contain baa. Then we only have to ensure

36 SPLICING SYSTEMSthat such a concatenation does not create an occurrence of baa. Suppose thatthe �rst word ends with a b. If the second word starts with an a, then wehave to be sure that directly after this a there is not another a { this gives therule (b; �; �; ab). If the second word starts with a b, then there is no problem{ we add the rule (b; �; �; b). Now suppose that the �rst word ends with an a.For the case that the second word starts with a b, we add the rule (a; �; �; b).However, if the second word starts with an a, then we must guarantee that the�rst word does not end with ba { this gives the rule (aa; �; �; a).With these rules we cannot generate the words �; a; b; aa and ba, so theyform the initial language. Then we have(a j ; j b) `(a;�;�;b) ab and (b j ; j b) `(b;�;�;b) bb;thus ��(h) contains all words of length 2 or smaller, which should indeed be thecase. Since each word that does not contain baa can arbitrarily be decomposedinto two subwords that do not contain baa, and since the rules are constructedsuch that they represent all possibilities to concatenate two such subwords, nowall words not containing baa can be generated recursively from shorter words.2Example 3.5 The regular language a�ba�ba� is not in H(FIN;FIN): splicingsystems cannot distinguish between the two b's, because there are arbitrarilylarge numbers of a's before, between and after them. More speci�cally, if oneof the two splicing sites of a rule contains less than two b's, then the resultingword may contain more or less than two b's, whereas if each splicing site hasto contain exactly two b's, then the number of a's in between is bounded.However, a�ba�b is in H(FIN;FIN), since ��(h) = a�ba�b for the �nite splic-ing system h = (fa; bg; L;R) withL = fbb ; abb ; bab ; ababgR = � a bbabb ; a baaba ; bab a �The reason for this is that in this case the two b's can be told apart: the �rst isfollowed by an a or a b, the second is not. Therefore, the strings ba and bb canbe used as two distinct `handles' or `�xed points' from where the arbitrarilylarge numbers of a's can be generated. (See also [Hea98, p.276].) 2The idea behind the following theorem, that states that any regular languagepreceded by a new symbol is in H(FIN;FIN), is that this new symbol can beused as a handle. We explain this through an example.

SPLICING SYSTEMS 37Example 3.6 Consider the language ca�ba�ba� 2 REG. This language can begenerated by a �nite splicing system h = (fa; b; cg; L;R) de�ned as follows:L = f caibajbak j i; j; k 2 f0; 1g gR = � caibajbacaibajb ; caibacaibajbcaib ; cac j i; j 2 f0; 1g�Now each of the four rules (caibajba; �; caibajb; �), for i; j 2 f0; 1g, can be usedto generate the arbitrarily many a's in the third group:(caibajba j ; caibajb j an) ` caibajban+1 for each n � 0:Similarly, the a's in the second and �rst group (in this order) are generatedusing the rules (caiba; �; caib; �), with i 2 f0; 1g, and (ca; �; c; �), respectively:(caiba j b ; caib j anbam) ` caiban+1bam for each n;m � 0;and (ca j bb ; c j anbambak) ` can+1bambak for each n;m; k � 0: 2We need some de�nitions related to classical `pumping properties' of �niteautomata. Let A = (Q;�; Æ; q0; F) be a deterministic �nite automaton. Wecall q0q1 : : : qm a state sequence (for a0a1 : : : am�1) in A if qj 2 Q for 0 � j � m,m � 0, qm 2 F and there are ai 2 � such that Æ(qi; ai) = qi+1, for 0 � i < m.A state sequence q0 : : : qi : : : qj : : : qm in A with 0 � i < j � m reduces to a statesequence q0 : : : qiqj+1 : : : qm in A if qi = qj and j is the smallest index such thatthere is an ` < j with q` = qj.A word w 2 L(A) reduces to a word w0 2 L(A), denoted w � w0, if thestate sequence for w in A reduces to the state sequence for w0 in A.Theorem 3.1 Let K be a regular language over �, and let c be a symbol notin �. Then cK 2 H(FIN;FIN).Proof. Construction. Since REG is closed under concatenation with symbols,there is a dfa A = (Q;�[fcg; Æ; q0; F) with L(A) = cK. We construct a �nitesplicing system h = (� [fcg; L;R) such that ��(h) = L(A) as follows.L = fw 2 L(A) j the state sequence for w in A does not containthree occurrences of the same state gR = f cuvcu j cuvw 2 L for a w 2 ��; v 6= �;Æ(q0; cu) = q = Æ(q; v) for a q 2 Q gIt is clear that L and R are �nite.

38 SPLICING SYSTEMSCorrectness. A proof that ��(h) � L(A) uses induction on �i. For i = 0 wehave �0(h) = L � L(A) by the de�nition of L. Now assume that �i(h) � L(A)for a certain i � 0, and observe the language �i+1(h) = �i(h) [�(�i(h)).Suppose that x and y in �i(h) are spliced using the rule (cuv; �; cu; �) from R,hence x = cuvw and y = cuz for some w; z 2 ��. From the de�nition of R weknow that Æ(q0; cu) = q and Æ(q; v) = q, for some q 2 Q. Since y is in �i(h)and thus in L(A), and since A is deterministic, we also have Æ(q; z) 2 F . Thuscuvz, which is the result of splicing x = cuvw and y = cuz using (cuv; �; cu; �),is in L(A). Consequently �i+1(h) � L(A), hence ��(h) � L(A).For a proof of L(A) � ��(h) �rst note that for every word z0 2 L(A) areduction z0 � z1 � : : : � zk, where k � 0, exists such that the state sequencefor zk does not contain any state twice.We claim that this reduction can be carried out in the reverse order byh, which means that any word in L(A) can be created starting from words inL and using splicing rules from R. Obviously, zk 2 L and thus zk 2 ��(h).Now assume that z` 2 ��(h) for some ` with 0 < ` � k, and consider z`�1.From the reduction step z`�1 � z` we know that there are u; v; w 2 �� suchthat z`�1 = cuvw, v 6= �, Æ(q0; cu) = q, Æ(q; v) = q, Æ(q; w) 2 F and thesecond occurrence of q is the �rst repetition in the state sequence for z`�1 inA. Then z` = cuw. Furthermore, since it is possible to reach a �nal statefrom q, this can also be done without passing any state twice. Hence there isa w0 2 �� such that cuvw0 is in L and thus r = (cuv; �; cu; �) is in R. Now(cuv j w0 ; cu j w) `r cuvw = z`�1, and since cuvw0 is in L and we assumedthat cuw = z` is in ��(h) we have z`�1 2 ��(h). 2Note the similarities in the above proof with the pumping lemma for regularlanguages, that states that if K is a regular language, then there is an n � 1such that for each z 2 K with jzj � n there exist u; v; w such that z = uvw,v 6= �, juvj � n and uviw 2 K for all i � 0. In the part of the proof wherewe show that ��(h) � L(A), the splicing of x = cuvw and y = cuz using(cuv; �; cu; �) to give cuvz can be seen as the extension of cuz to cuvz, afterwhich the splicing of two occurrences of cuvz using the same rule yields cuv2z,and so on (i.e., we `pump up'). On the other hand, for the reduction stepcuvw = z`�1 � z` = cuw used in the part of the proof that demonstrates thatL(A) � ��(h) it holds that cuw = cuv0w (i.e., we `pump down').A solution to the problem of deciding whether a regular language is inH(FIN;FIN) can be found in [BZ99].3.3 Restricted non-iterated splicingIn this section we consider the setting where the general splicing operation(x; y) `r z may only be applied in a certain context.

SPLICING SYSTEMS 39We start by recalling the de�nitions of certain types of restricted splicingfrom [PRS96b, KPS96]. We splice in length-increasing mode (in for short) ifthe length of the resulting string is strictly greater than the lengths of the twoinput strings, in length-decreasing mode (de) if the length of the resulting stringis strictly smaller than the lengths of the two input strings, in same-length mode(sl) if the two input strings have the same length, and in self splicing mode(sf) if the two input strings are equal. Formally, for a splicing rule r(x; y) `inr z i� (x; y) `r z and jzj > maxfjxj; jyjg(x; y) `der z i� (x; y) `r z and jzj < minfjxj; jyjg(x; y) `slr z i� (x; y) `r z and jxj = jyj(x; y) `sfr z i� (x; y) `r z and x = y:Let h = (V;L;R) be a splicing system. With the restricted splicing operationsgiven above we de�ne the (restricted non-iterated splicing) languages��(h) = fz 2 V � j (x; y) `�r z for some x; y 2 L and r 2 Rgfor � 2 fin; de; sl; sf g. Similarly we de�ne the familiesS�(F1;F2) = f��(h) j h = (V;L;R) with L 2 F1 and (R) 2 F2g:We mainly consider F1 = REG; LIN;CF and F2 = FIN;REG; LIN;CF. We repeatin Table 3.3 the parts of Tables 1, 2 and 3 from [KPS96] that give the lowestupper bounds within the Chomsky hierarchy for the families S�(F1;F2) forthe modes � that we consider. For comparison we repeat in the �rst row ofthe table the smallest upper bounds for unrestricted non-iterated splicing (alsocalled free splicing, f for short) given in Table 3.1.F2 ! FIN REG LIN CF FIN REG LIN CFf REG REG LIN CF CF CF RE REin REG REG CF+ CS CS CS CSde REG REG CF+ CS CS RE REsl LIN LIN CF+ CF+ RE REsf CS CS CF+ RE REF1 = REG F1 = LIN;CFTable 3.3: Smallest upper bounds of S�(F1;F2) within the Chomsky hierarchyFor the families corresponding to the entries marked with CF+ it is only knownthat the family contains a non-context-free language; it is not yet determinedwhether the smallest upper bound within the Chomsky hierarchy is CS or RE.Note that although, for instance, the table contains the same values forthe families Ssl(REG;FIN) and Ssl(REG;REG), this does not necessarily mean

40 SPLICING SYSTEMSthat they are equal: they only have the same upper bound in the Chomskyhierarchy. The same remark holds for the equality of the tables for F1 = LINand F1 = CF.Examples of restricted splicing in these four modes are given in Chapters 5and 6.3.4 Research topicsIn the literature on splicing systems, a splicing rule (u1; v1; u2; v2) is usuallyrepresented by the string u1#v1$u2#v2, and so a set of splicing rules is alanguage. Although this string representation of splicing rules is very natural,other representations are possible. The question arises whether the results onthe generative power of splicing with rules from a certain family of languages,that are mentioned in the literature, are properties of the splicing systems orof the speci�c representation of splicing rules that is chosen. For example,do we get di�erent results if we �rst write the left contexts of the rule andthen the right contexts, choosing u1#u2$v1#v2 instead of u1#v1$u2#v2 as thestring representation of (u1; v1; u2; v2) ? In Chapter 4 we answer this questionin detail for non-iterated and iterated splicing systems, and show that theclassi�cations in Tables 3.1 and 3.2 are not in
uenced by this particular changein representation. We brie
y discuss some other, related, string representations.The �rst two columns of Table 3.1 show that S(F ;FIN) = S(F ;REG) forall families F considered here except for LIN, for which it is only known thatS(LIN;FIN) and S(LIN;REG) have the same upper and lower bounds withinthe Chomsky hierarchy. In Chapter 5 we show for all F except CS how theregular rule set may be replaced by a �nite one, i.e., we give direct proofs of theequalities S(F ;REG) = S(F ;FIN). Moreover, we show that S(F ;FIN) = F �F{ i.e., it consists of all �nite unions of concatenations of two languages in F{and thus obtain the new result that both S(LIN;FIN) and S(LIN;REG) arecharacterized by the family LIN � LIN. Furthermore, we try to extend thelatter result to the case of restricted non-iterated splicing.For several modes � of restricted splicing and for certain families of lan-guages F1 and F2, it is not yet known what the smallest upper bound withinthe Chomsky hierarchy is for splicing F1 languages in mode � using rule setsfrom F2 (see Table 3.3). In Chapter 6 we solve the open problems in this table,and moreover we improve some of the upper bounds given there from CS toCF(Zk), the family of context-free valence languages over Zk, for either k = 1or k = 2.

Chapter 4String representations ofsplicing rulesIn most of the literature on splicing systems a splicing rule r = (u1; v1; u2; v2)is represented by the string (r) = u1#v1$u2#v2. In this way a set of splicingrules becomes a language and consequently its complexity can be measuredby determining its position in the Chomsky hierarchy. We investigate whethertaking a string representation of splicing rules other than the standard one hasany e�ect on the position in the Chomsky hierarchy of the families of non-iterated and iterated splicing languages.To allow for other string representations, we extend the notation for familiesof splicing languages S(F1;F2) and H(F1;F2). Let � : (V �)4 !W � be a givenstring representation of splicing rules over the alphabet V , for some alphabetW . Then de�neS�(F1;F2) = f�(h) j h = (V;L;R); with L 2 F1 and �(R) 2 F2gand H�(F1;F2) = f��(h) j h = (V;L;R); with L 2 F1 and �(R) 2 F2g:Hence, by de�nition, S(F1;F2) = S (F1;F2) and H(F1;F2) = H (F1;F2) forthe standard string representation .We will also directly consider the family of splicing relations de�ned by thefamily F of languages over W under the representation � : (V �)4 !W �,R�(F) = fR � (V �)4 j �(R) 2 Fg:Now consider an alternative representation: �rst writing the left contexts, andthen the right contexts of the splicing sites. Formally we use the mapping: (V �)4 ! V �#V �$V �#V � de�ned by (u1; v1; u2; v2) = u1#u2$v1#v2.In Section 4.1 we investigate whether the splicing relations de�ned by thelanguage families from the Chomsky hierarchy are changed when we move from41

42 STRING REPRESENTATIONS OF SPLICING RULESthe -representation to the -representation. In other words, for each F2 inthe Chomsky hierarchy, we determine whether or not R (F2) = R (F2).It turns out that for F2 2 fFIN;REG;CS;REg indeed R (F2) = R (F2).Obviously this implies for allF1 that S (F1;F2) = S (F1;F2) andH (F1;F2) =H (F1;F2).For F2 2 fLIN;CFg, for which we show in Subsection 4.1.1 that R (F2) 6=R (F2), we prove that nevertheless S (F1;F2) = S (F1;F2) for all F1 in theChomsky hierarchy (Section 4.2), while in the case of iterated splicing we onlyshow that the smallest upper bounds and greatest lower bounds given forH (F1;F2) in Table 3.2 also hold for H (F1;F2) (Section 4.3). The preciserelation between H (F1;F2) and H (F1;F2) in these cases is open for furtherinvestigation.In Section 4.4 we discuss related string representations.4.1 Families of splicing relationsIn this section we compare the families of splicing relations de�ned by the twostring representations and of splicing rules.Observe that representations like and de�ne a one-to-one correspon-dence between a splicing rule (u; v; w; x) and its string representations u#v$w#xand u#w$v#x, respectively. Thus when considering such a representation � ofa splicing relation R over the alphabet V and a language L � V �#V �$V �#V �,one has �(R) = L if and only if R = ��1(L). Consequently we may writeR�(F) = f��1(L) j L � V �#V �$V �#V � and L 2 Fg:Hence proving that R (F) � R (F) amounts to verifying that R = �1(L)for an L 2 F implies (R) = K for a K 2 F . Consequently we have to provethat (�1(L)) 2 F for every L 2 F with L � V �#V �$V �#V �. Note thatthis is a closure property of the family F , namely closure under the operation�1 that maps a string u#v$w#x to the string u#w$v#x.Also note that this operation is its own inverse, which implies that �1 =�1 since �1 = (�1)�1 = (�1)�1 �1 = �1. This means thatR (F) � R (F) implies the converse inclusion R (F) � R (F).4.1.1 LIN and CF splicing rulesIt is easy to see that R (CF) 6= R (CF): the set of rules R = f(an; bm; an; bm) jm;n � 1g is not context-free when the classical -representation is used. Ifwe use the new -representation instead, then (R) = f an# an $ bm# bm jm;n � 1g is a context-free language.We now show the same inequality for LIN. Consider the splicing relationR = f(ap; cq; br; ds) j p; q; r; s � 1 and p+q = r+sg. Then the -representationof R is a linear language, as demonstrated in the following example.

STRING REPRESENTATIONS OF SPLICING RULES 43Example 4.1 Let G be the linear cfg with start symbol S de�ned byS ! aSd j a#Td j aU#dT ! cTd j cV b#U ! aUb j #cV bV ! cV b j $It can easily be veri�ed that L(G) = (R) = fap#cq$br#ds j p; q; r; s � 1 andp+ q = r + sg. 2The -representation of R, however, is not linear. To prove that, we useLemma 2 from [Gre79], which we repeat here.Proposition 4.1 Let L � a+b+c+d+ be a language such that1. anbnckdk 2 L for all n; k � 1,2. if anbnckd` is in L, then k � `, and3. there are integers t1; t2 � 1 such that, if anbmckd` is in L and n > m,then (n�m)t1 � (k + `)t2.Then L is not linear context-free.Lemma 4.1 K = fapbrcqds j p; q; r; s � 1 and p+ q = r + sg 62 LIN.Proof. Proposition 4.1 is applicable, because obviously K � a+b+c+d+; (1) ifp = r and q = s, then p+q = r+s; (2) if p = r and we must have p+q = r+s,then it has to be the case that q = s; (3) taking t1 = t2 = 1, we see that if p > rand p+ q = r+ s, then 0 < p� r = �q+ s, hence p� r � q+ s. Consequently,K is not linear context-free. 2Since LIN is closed under homomorphisms, from Lemma 4.1 it follows that(R) = fap#br$cq#ds j p; q; r; s � 1 and p+q = r+sg 62 LIN and consequentlyR (LIN) 6= R (LIN).Theorem 4.2 R (F) 6= R (F) for F = LIN;CF.Consequently, for LIN and CF splicing rules, it matters which string represen-tation is used.4.1.2 FIN, REG, CS and RE splicing rulesFor the �nite languages, it should be clear that the two representations areequivalent: if R is a �nite splicing relation, then both (R) and (R) are�nite languages.For the regular, context-sensitive and recursively enumerable languages weuse the following lemma.

44 STRING REPRESENTATIONS OF SPLICING RULESLemma 4.3 REG;CS and RE are closed under �1.Proof. The mapping �1 can be realized by a 2-way deterministic gener-alised sequential machine (2dgsm, a �nite-state device with a 2-way input tapeand a 1-way output tape, see [AU70]): on input u#v$w#x it outputs u#, skipsv$, outputs w$, returns on the input to the �rst #, outputs v#, skips $w# and�nally outputs x. Since �1 is its own inverse, it can also be realized by aninverse 2dgsm mapping. The result now follows from the closure of REG, CSand RE under inverse 2dgsm mappings, see [AU70, Theorem 2]. 2As observed before, this closure property implies the following equalities.Lemma 4.4 R (F) = R (F) for F = FIN;REG;CS;RE.Consequently for splicing systems with FIN;REG;CS or RE splicing rules it doesnot matter whether we use or as string representation.4.2 Families of non-iterated splicing languagesWe know that R (F2) = R (F2) for F2 2 fFIN;REG;CS;REg, and thus thatfor each of the six families F1 considered here the following holds.Theorem 4.5 S (F1;F2) = S (F1;F2) for F2 = FIN;REG;CS;RE.For F2 2 fLIN;CFg, however, we have demonstrated that R (F2) 6= R (F2),and consequently, we still have to investigate the situation for these two possi-bilities for F2. Because in Table 3.1 exact classi�cations are given for S(F ; LIN)and S(F ;CF) for each F except for REG, we consider the splicing of non-REGlanguages apart from the splicing of REG languages.Theorem 4.6 S (F1;F2) = S (F1;F2) for F1 6= REG and F2 = LIN;CF.Proof. We show that the results used in [HPP97] to determine the position ofS (F1;F2) with F1 6= REG and F2 2 fLIN;CFg in the Chomsky hierarchy alsohold when the -representation is used. These results are the following:(1) S (FIN;F2) � FIN (obvious),(2) F1 � S (F1;F2) [HPP97, Lemma 3.2],(3) L1=L2 2 S (F2;F2) for each L1; L2 2 F2 [HPP97, Lemma 3.7].The proof of (1) is independent of the splicing rules, therefore S (FIN;F2) � FINholds. In the proof of (2), only one splicing rule is used, (�; c; c; �), for whichthe -representation is equal to the -representation. For the splicing relationused to prove (3), which isR = f(�;wc; c; �) j w 2 L2g, where L2 2 F2; L2 � V �

STRING REPRESENTATIONS OF SPLICING RULES 45and c 62 V , it should be clear that both (R) = #L2c$c# and (R) =#c$L2c# belong to F2.By (1) and (2) we have FIN � S (FIN;F2) � FIN. As each RE-language isthe quotient of two linear languages ([LLR85]), from (3) the inclusion RE �S (LIN; LIN) � S (LIN;CF) follows. Hence this part of the table does notchange, and since exact classi�cations are obtained, we have proved the theo-rem. 2We now show that S (REG;F2) = S (REG;F2) also holds (for F2 = LIN;CF),by giving a direct proof.We start by providing a normal form for splicing systems with regular initiallanguage and rules from a family that is closed under gsmmappings. Accordingto this normal form, every splicing rule is of the form (u; p; q; x), where u andx are strings, while p and q are symbols.This normal form is suggested by the fact that the strings v1 and u2 donot appear in the result when a splicing rule (u1; v1; u2; v2) is applied. Weonly need the fact that the initial strings have these substrings next to thecutting points. However, the interchange of these two strings causes the factthat R (LIN) 6= R (LIN) and R (CF) 6= R (CF), as explained in Section 4.1. Ifwe are able to restrict v1 and u2 to symbols rather than strings, we do not havethis problem: since LIN and CF are closed under gsm mappings, it is possibleto interchange the two symbols.We need some notation: let A = (Q;�; Æ; q0; F) be a deterministic �niteautomaton, and let p 2 Q and u 2 ��. We use p u! to denote the fact thatp has an outgoing path with label u in the state transition diagram of A, i.e.,Æ(p; u) 6= ?. Similarly, we write u!p if p has an incoming path with label u,i.e., p 2 Æ(q; u) for some q 2 Q.Lemma 4.7 Let F be family of languages that is closed under gsm mappings.For each splicing system h = (V;L;R) of (REG;F) type an equivalent splicingsystem h1 = (V1; L1; R1) of (REG;F) type can be constructed with R1 � V �1 �V1 � V1 � V �1 .Proof. Construction. Let A = (Q;V; Æ; q0; F) be a deterministic �nite automa-ton accepting L, with Q \ V = ?. We may assume that A is `reduced', i.e.,every state in Q occurs on a path from the initial state to a �nal state. De�neQ0 = fq0 j q 2 Qg and Q00 = fq00 j q 2 Qg. Let L!p be the language acceptedby A!p = (Q;V; Æ; q0; fpg), and similarly let Lp! be the language accepted byAp! = (Q;V; Æ; p; F). De�ne h1 = (V [Q0 [Q00; L1; R1) as follows:L1 = [p2Q((L!p � p0) [(p00 � Lp!))R1 = f(u1; p0; q00; v2) j (u1; v1; u2; v2) 2 R;

46 STRING REPRESENTATIONS OF SPLICING RULESp0 2 Q0; q00 2 Q00; pv1! and u2!qgCorrectness. Since both L!p and Lp! are regular and Q is �nite, L1 is aregular language.Consider the -representation of a splicing rule, u1#v1$u2#v2. The trans-lation of u1#v1$u2#v2 into u1#p0$q00#v2 can be realized by a gsm mapping,that simulates the transition diagram of A. Such a gsm copies u1# to theoutput, guesses a state p and writes p0$, and then reads without writing untilit reaches $, in the meantime checking that v1 can be read in A starting inp. After $ it does something similar for u2#v2. Since F is closed under gsmmappings we have (R1) 2 F .From the construction above, it is clear that x = x1u1v1y1 and y = x2u2v2y2are in L, for xi; ui; vi; yi 2 V �, if and only if x0 = x1u1 � p0 2 L1, with psuch that x1u1! p, and y0 = q00 �v2y2 2 L1, with q such that qv2y2! . Moreover,r = (u1; v1; u2; v2) 2 R if and only if r0 = (u1; p0; q00; v2) 2 R1 with pv1! and u2!q.Consequently we have (x1u1 j v1y1; x2u2 j v2y2) `r x1u1v2y2 if and only if(x1u1 j p0; q00 j v2y2) `r0 x1u1v2y2. 2Hence there exists an e�ective construction that transforms a splicing sys-tem of (REG;F) type into an equivalent splicing system of (REG;F) type thatis in normal form. Recall that the `default' string representation is the -representation (see page 32). Using a gsm mapping similar to the one used inthe proof of Lemma 4.7 we can prove that the lemma also holds when usingthe -representation.Furthermore, the translation of the -representation of a rule in normalform into the -representation (i.e., u#p$q#x 7! u#q$p#x) can also be real-ized by a gsmmapping. Such a gsm reads and outputs u#, keeps p$ in its �nite-state memory, when reading q it outputs q$p, and then reads and outputs #x.Clearly, this also works for the translation of the - into the -representation.Consequently, for a splicing relation R in normal form, (R) 2 F if and onlyif (R) 2 F .Hence we have the following result, which is applicable for F = LIN;CF.Theorem 4.8 S (REG;F) = S (REG;F) whenever F is closed under gsmmappings.Now, summarizing our results on non-iterated splicing, we have the equalityS (F1;F2) = S (F1;F2) for all F1;F2 in the Chomsky hierarchy.4.3 Families of iterated splicing languagesSimilar to the case of non-iterated splicing, we want to know whether theresults on iterated splicing change when we use the -representation instead

STRING REPRESENTATIONS OF SPLICING RULES 47of the -representation. Since we know that R (F2) = R (F2) for F2 =FIN;REG;CS;RE, we immediately have the following theorem, for F1 in theChomsky hierarchy.Theorem 4.9 H (F1;F2) = H (F1;F2) for F2 = FIN;REG;CS;RE.For F2 = LIN;CF we have the following result.Theorem 4.10 For F2 = LIN;CF and arbitrary F1, H (F1;F2) has the sameupper and lower bounds in the Chomsky hierarchy as H (F1;F2).Proof. We check whether the results used in [HPP97] to �ll the LIN andCF columns of Table 3.2 also hold when the -representation is used. Thoseresults are the following:(1) F1 � H (F1;F2) [HPP97, Lemma 3.12],(2) H (F1;F2) 6� F1 for F1 2 fREG; LIN;CF;CSg [HPP97, Lemma 3.13],(3) H (FIN;FIN) contains in�nite languages [HPP97, discussion in proofof Theorem 3.3],(4) For all L � V �; L 62 F1 and c; d 62 V we haveL0 = (dc)�L(dc)� [c(dc)�L(dc)�d 62 H (F1;F2) [HPP97, Lemma 3.16],(5) H (F1;F2) 6� CS for F2 6= FIN [HPP97, Lemma 3.15].In the proofs of (1) and (3) the -representation of the splicing relation is inFIN, for (4) it is arbitrary (i.e., RE), and for (5) it is in REG. These familiesare closed under �1, hence the same results are obtained when we use the-representation.In the proof of (2) from a splicing relation R a new splicing relation R0 =f(u1; cv1; u2c; v2) j (u1; v1; u2; v2) 2 Rg is constructed. Such a construction alsoworks when the -representation is used: (R0) can be obtained from (R)by changing the $ into c$c. The families in the Chomsky hierarchy are closedunder this operation (�-free homomorphism).For F1 6= RE, by (1), (2), (3) we have F1 � H (F1;F2), while from (4)and (5) it follows that the smallest upper bound for H (F1;F2) is RE. By (1)immediately RE � H (RE;F2). 2Consequently, Table 3.2 does not change when we use the -representationinstead of the -representation. Note, however, that we have not proved thatH (F1;F2) = H (F1;F2), for F2 = LIN;CF, except for the obvious case inwhich F1 = RE where upper and lower bound coincide with RE.

48 STRING REPRESENTATIONS OF SPLICING RULES4.4 Representations other than andWe have considered one alternative string representation for splicing relations,that separates left and right contexts rather than the two initial strings. How-ever, there are 24 possible representations in the `#$#'-style (i.e., representa-tions of a splicing rule (u1; v1; u2; v2) where u1; v1; u2; v2 are concatenated inany order and separated by #, $ and # (in this order)), corresponding to thepermutations of the four components of the splicing rules. We do not claimthat all these permutations have a natural interpretation, but still we believethat the e�ect of using any of these representations on the classi�cation resultsgiven in Tables 3.1 and 3.2 should be determined. In the sequel we discuss theremaining possibilities in a rather informal way. This discussion also holds forstring representations that use, for instance, three times the same symbol, orthree di�erent symbols to separate the four parts of a splicing rule.4.4.1 Splicing with FIN;REG;CS or RE rulesFor (non-iterated or iterated) splicing with FIN;REG;CS or RE splicing rules, itdoes not matter which of the `#$#'-representations is used: for a �nite splicingrelation obviously each of these representations yields a �nite language, and fora REG;CS or RE splicing relation R, an inverse 2dgsm mapping like the onewhich is used to prove Lemma 4.3 can transform (R) into �(R) for eachof the other representations � in this style. In other words, if � is one ofthese representations, then R (F2) = R�(F2) and consequently S (F1;F2) =S�(F1;F2) and H (F1;F2) = H�(F1;F2), for F2 = FIN;REG;CS;RE.4.4.2 Splicing with LIN or CF rulesNon-iterated splicing non-REG languages with LIN or CF splicing rules yieldsthe same classi�cation in each one of the `#$#'-representations, because theresults used in [HPP97] to �ll the corresponding part of Table 3.1 are easilyseen to hold for all string representations � in this style, cf. Theorem 4.6.Since in these classi�cations upper and lower bound coincide, this implies thatS (F1;F2) = S�(F1;F2), for F1 6= REG and F2 = LIN;CF.In the case of non-iterated splicing REG languages with CF splicing rules, weuse the normal form of Section 4.2 for the rules, that makes it possible to changethe -representation u#p$q#x of a splicing rule into the -representationu#q$p#x by applying a gsm mapping (recall that this is possible only becausep and q are symbols). Obviously, there exist gsm mappings that map u#p$q#xinto each of the 12 representations in which u precedes x. To see that the other12 possibilities can also be obtained by operations preserving context-freeness,note that CF is closed under the operation cycle, that can move x in frontof u [HU79, Exercise 6.4c]. Since, for a language K, cycle (K) is de�ned asfyx j xy 2 K for some x and yg, we need some extra operations to make sure

STRING REPRESENTATIONS OF SPLICING RULES 49that, for instance, u#p$q#x is transformed only in x#u$p#q. This can be doneby �rst creating u#p$q#x�, where � is a new symbol, then cycle followed byintersection with an appropriate regular set to obtain x � u#p$q#, and �nallya gsm mapping to get x#u$p#q. Since CF is closed under all these operations,this shows that S (REG;CF) = S�(REG;CF) for each `#$#'-representation �.For non-iterated splicing REG languages with LIN rules, however, we givean example that shows that the `#$#'-representations of a rule (u; v; w; x) inwhich x precedes u are not equivalent to the -representation.Example 4.2 Consider a splicing system h = (fa; b; c; dg; L;R) withL = c � fa; bg� � dR = f(cbj ; d; c; anbid) j i; j; n � 1 and i+ j = ng:Then the `reverse' representation of R (i.e., the representation that transforms(u; v; w; x) into x#w$v#u) isRr = fanbid#c$d#cbj j i; j; n � 1 and i+ j = ng;which is a linear language. The non-iterated splicing language generated by h,�(h) = fcbjanbid j i; j; n � 1 and i+ j = ng;is not in LIN (by the pumping lemma for linear languages [HU79, Exercise 6.11]).Since S (REG; LIN) � LIN, clearly this `reverse' representation is not equivalentto the -representation. 2Of course, all representations � in which u precedes x are equivalent to the-representation, by using the same arguments as in the CF case. So for thoserepresentations we have S (REG; LIN) = S�(REG; LIN).For iterated splicing, it is easy to see that the results used in [HPP97] to�ll the LIN and CF columns of Table 3.2 hold for every `#$#'-representation,by observations as in the proof of Theorem 4.10. Hence this part of that tabledoes not change either.4.5 SummarySummarizing the results of this chapter, we see that for non-iterated splicingfamilies all `#$#'-representations are equivalent, except for the twelve casesmentioned above, where a REG initial language is spliced using LIN rules.For iterated splicing, however, we have seen that those representations areonly equivalent when splicing with FIN;REG;CS or RE rules; in the case of LINor CF rules we know that the classi�cations (i.e., the upper and lower bounds)in Table 3.2 do not change, but we do not yet know whether or not all familiesof iterated splicing languages stay the same.

Chapter 5Non-iterated splicing withregular rulesThe �rst two columns of Table 3.1 show that S(F ;FIN) equals S(F ;REG) forall F except LIN, for which it is only known that they have the same upper andlower bounds. We give a direct proof of the equalities S(F ;FIN) = S(F ;REG)for all Chomsky families, and moreover we prove that S(F ;FIN) = F � F , foreach Chomsky family F except CS. This yields the missing characterizationsin Table 3.1: S(LIN;FIN) = S(LIN;REG) = LIN� LIN.We try to replace regular rule sets by �nite rule sets for the four kinds ofrestricted splicing that we consider as well.5.1 Unrestricted splicingWe �rst give a characterization of S(LIN;FIN) in terms of LIN. We do this in ageneral setting: we give a characterization of S(F ;FIN) in terms of F , for eachfamily F that is closed under gsm mappings, union and concatenation withsymbols.For a language family F we use F � F to denote �nite unions of elementsof F2, i.e., languages of the form K1 �L1[: : :[Kn �Ln, n � 0, with Ki; Li 2 F .If we assume that f�g and ? are elements of F , then F � F equals F if andonly if F is closed under union and concatenation. Hence F �F = F for eachChomsky family except LIN, which is not closed under concatenation.Lemma 5.1 Let F be a family of languages closed under gsm mappings, unionand concatenation with symbols. Then S(F ;FIN) = F � F .Proof. First we show that S(F ;FIN) � F �F . Let h = (V;L;R) be a splicingsystem with a �nite number of rules and with L 2 F .Consider the rule r = (u1; v1; u2; v2). When r is applied to strings x1u1v1y1and x2u2v2y2, then only the substrings x1u1 and v2y2 are visible in the resulting51

52 NON-ITERATED SPLICING WITH REGULAR RULESstring x1u1v2y2. We de�ne two languages derived from the initial languagefollowing this observation: let Lhr = fxu1 j xu1v1y 2 L for some x; y 2 V �g,and let Lri = fv2y j xu2v2y 2 L; for some x; y 2 V �g.Observe that both Lhr and Lri can be obtained from L by a gsm mappingthat, in the case of Lhr, reads and outputs x, guesses that it can start readingu1v1 for the splicing rule r = (u1; v1; u2; v2), reads and outputs u1, and readsthe rest of the input without copying it to the output, while checking thatit starts with v1. A similar gsm can construct Lri, and consequently theselanguages are in F . Clearly, �(h) = Sr2R LhrLri, and since there is only a�nite number of splicing rules this means that �(h) 2 F � F .Second, we show that F �F � S(F ;FIN). Consider K1 �L1 [: : : [Kn �Lnwith Ki; Li � V � in F , for some alphabet V and n � 0. This union is obtainedby splicing the initial language Sni=1Kici [Sni=1 c0iLi with rules (�; ci; c0i; �),i = 1; : : : ; n, where the ci; c0i are new symbols. Since F is closed under unionand concatenation with symbols, the initial language belongs to F . 2This lemma is applicable for the Chomsky families FIN;REG;CF;RE and LIN.For the �rst four of these families it gives the known characterizations S(F ;FIN)= F � F = F . The equality S(LIN;FIN) = LIN � LIN, however, appears tobe new, although the family LIN � LIN is mentioned in the proof of Theo-rem 3 of [P�au96a], where it is demonstrated that S(LIN;REG) is strictly in-cluded in CF. In fact, in that proof the inclusion S(LIN;REG) � LIN � LINis proved. Together with our characterization of S(LIN;FIN) and the fact thatS(LIN;FIN) � S(LIN;REG) this gives the following result, which gives a negativeanswer to a question from [P�au96a]: is the inclusion S(LIN;FIN) � S(LIN;REG)proper?Theorem 5.2 S(LIN;FIN) = S(LIN;REG) = LIN� LIN.Note that indeed LIN � LIN � LIN � CF: the �rst inclusion follows from thefact that LIN contains the language f�g, and it is a proper inclusion sinceLIN is not closed under concatenation. The second inclusion is true becauseLIN � CF and CF is closed under concatenation and union; it is proper sincelanguages in LIN�LIN have index at most two, while context-free languages canhave arbitrarily large index (for details, see the proof from [P�au96a] mentionedabove).We can extend Theorem 5.2 to language families that are closed undershu�e with symbols and intersection with regular sets, by re�ning the proof ofLemma 5.1. In other words, when using an initial language from such a family,regular sets of splicing rules are equivalent to �nite sets of splicing rules. We usea technique that is also used in [P�au96a, Theorem 5], where the cutting pointsin words from the initial language are marked with new symbols in order toreduce a �nite rule set to a rule set with radius 1. We show how this techniquecan be applied to (in�nite) regular rule sets as well.

NON-ITERATED SPLICING WITH REGULAR RULES 53Theorem 5.3 Let F be a family of languages closed under shu�e with symbolsand intersection with regular sets. Then S(F ;FIN) = S(F ;REG).Proof. The inclusion S(F ;FIN) � S(F ;REG) is clear. For the converse inclu-sion we use the following construction.Construction. Let h = (V;L;R) be a splicing system with L 2 F and (R) 2REG. Let A = (Q;V [f#; $g; Æ; q0; F) be a deterministic �nite automaton withL(A) = (R), Q \ (V [f#; $g) = ? and #; $ 62 V . We construct a splicingsystem h0 = (V [Q;L0; R0) with L0 2 F , R0 �nite and �(h0) = �(h) as follows.L0 = fxupvy j x; u; v; y 2 V �; xuvy 2 L and Æ(q0; u#v) = p g[fxuqvy j x; u; v; y 2 V �; xuvy 2 L and Æ(q; u#v) 2 F gR0 = f(�; p; q; �) j Æ(p; $) = qgCorrectness. First, observe that L0 can be constructed from L as follows: L0 =(LyQ)\K, where y denotes the shu�e operation and K = fxupvy j x; u; v; y 2V � and either Æ(q0; u#v) = p or Æ(p; u#v) 2 Fg. Note that the language Kcan be constructed from (R) by a non-deterministic non-erasing fstmappingthat uses A. For example, when computing xu1pv1y from u1#v1$u2#v2 thefst �rst non-deterministically generates x and then simulatesA on the segmentu1 of its input, while copying its input to the output. At the end of u1, it reads# and writes p to the output, where p is non-deterministically guessed. Thefst now reads v1 and copies it to the output, while checking whether state pis reached after reading v1 in A. After this it reads $u2#v2 without copyingit to the output, and then it non-deterministically generates y. To computexu2qv2y from u1#v1$u2#v2 a similar procedure is followed. Also note that,because REG is closed under non-erasing fst mappings, K is regular. Since Fis closed under shu�e with symbols and intersection with regular sets, L0 is inF . Second, it is clear that R0 is �nite, sinceA has only �nitely many transitions.Third, we prove that �(h) � �(h0). Let x = x1u1v1y1 2 L, y = x2u2v2y2 2L and r = u1#v1$u2#v2 2 (R) be such that (x; y) `r x1u1v2y2. Then thereare p; q 2 Q such that Æ(q0; u1#v1) = p, Æ(p; $) = q and Æ(q; u2#v2) 2 F .Consequently there are x0 = x1u1pv1y1 2 L0, y0 = x2u2qv2y2 2 L0 and r0 =(�; p; q; �) 2 R0 with (x0; y0) `r0 x1u1v2y2.Finally, we prove that �(h0) � �(h). Let x0 = upv 2 L0, y0 = wqz 2 L0,r0 = (�; p; q; �) 2 R0 and (x0; y0) `r0 uz. Then it must be that u = x1u1 andv = v1y1, for some x1; u1; v1; y1 2 V � such that Æ(q0; u1#v1) = p, and w = x2u2,z = v2y2, for some x2; u2; v2; y2 2 V � such that Æ(q; u2#v2) 2 F . Because(�; p; q; �) 2 R0, it also holds that Æ(p; $) = q. Consequently there is a ruler = u1#v1$u2#v2 2 (R). Moreover, by the construction of L0, there must

54 NON-ITERATED SPLICING WITH REGULAR RULESbe x = x1u1v1y1 2 L and y = x2u2v2y2 2 L such that (x; y) `r x1u1v2y2 = uz.Hence �(h) = �(h0). 2Note that every rule (�; p; q; �) in R0 corresponds to a (regular) set of rulesf u1#v1$u2#v2 j Æ(q0; u1#v1) = p and Æ(q; u2#v2) 2 F g � (R).Again, for all Chomsky families except LIN the last result is implicit inTable 3.1. Here it is obtained through direct construction.Note that we cannot replace the shu�e with symbols and the intersectionwith regular sets by a gsm mapping, because it may be that the empty word isone of the terms of the splicing and gsm's are not allowed to write a non-emptystring while reading �.Also note that the construction in the proof of Theorem 5.3 gives an af-�rmative answer to another question posed in [P�au96a]: can each language inS(F ;REG) be represented in a `simple' way starting from languages in S(F ; [1])?Indeed, whenever F is closed under shu�e with symbols and intersection withregular sets, then S(F ;REG) = S(F ; [1]).5.2 Same-length splicingA closer look at the proof of Theorem 5.3 reveals that it also works for non-iterated splicing in same-length mode, where the splicing of x and y is onlyallowed if jxj = jyj.Theorem 5.4 Let F be a family of languages closed under shu�e with symbolsand intersection with a regular set. Then Ssl(F ;FIN) = Ssl(F ;REG).Proof. It is clear that in the construction used in the proof of Theorem 5.3 itholds that jx0j = jxj + 1 and jy0j = jyj + 1. Thus we have jxj = jyj if and onlyif jx0j = jy0j and consequently �sl(h) = �sl(h0). 25.3 Self splicingIn the case of self splicing, where a string is spliced with itself, both splicing sitesare found in that same string. Hence the strategy of marking the two cuttingpoints of a splicing rule (u1; v1; u2; v2) in the input string with new symbols(say p and q) does not work: if the second splicing site u2v2 occurs before the�rst splicing site u1v1, then self splicing xu2 q v2yu1 p v1z with the new splicingrule (�; p; q; �) gives a word that still contains the auxiliary symbols q and p.We will explain that, at least for self splicing with a regular initial language,this is not caused by this particular construction: the family Ssf (REG;FIN) isstrictly contained in the family Ssf (REG;REG). This can be proved using thelanguage from the following example.

NON-ITERATED SPLICING WITH REGULAR RULES 55Example 5.1 Consider the splicing system h = (fa; bg; L;R) de�ned byL = a�ba�ba� 2 REG(R) = ba�# b $# ba�b 2 REGWhen splicing in self splicing mode, the only rule that is applicable to a`bambanis bam#b$#bamb, which gives as result a`bambamban. Hence�sf (h) = fa`bambamban j `;m; n � 0g 2 Ssf (REG;REG): 2Let (u1; v1; u2; v2) be a splicing rule. Since in the case of self splicing bothsplicing sites can be found in the same string, the input string can be writtenas xyz, where either u1 2 Suf (x), v1 2 Pref (yz), u2 2 Suf (xy), v2 2 Pref (z)and the result of self splicing is xz, or u1 2 Suf (xy), v1 2 Pref (z), u2 2 Suf (x),v2 2 Pref (yz) and the result of self splicing is xyyz. Note that the situationwhere the two cutting points coincide is covered by both the �rst and the secondcase (y = � and the result of the splicing equals the input string).We will show that K = fa`bambamban j `;m; n � 0g cannot be createdby self splicing a regular initial language using only a �nite number of rules.The idea behind the proof is similar to that behind the proof of a�ba�ba� 62H(FIN;FIN) (see Example 3.5): with a �nite number of rules either one cannotcontrol the number of b's in the resulting string, or one cannot get the desirednumbers of a's in between the b's.Theorem 5.5 Ssf (REG;FIN) � Ssf (REG;REG)Proof. The inclusion Ssf (REG;FIN) � Ssf (REG;REG) follows from the de�ni-tions. We show that the language K = fa`bambamban j `;m; n � 0g from theprevious example is not in Ssf (REG;FIN).Suppose that h = (V;L;R) is a splicing system with L 2 REG, R �nite and�sf (h) = K. Since R is �nite we can de�ne k = maxfjuij j i = 1; : : : ; 4 and(u1; u2; u3; u4) 2 Rg. Let w be a word in �sf (h).First, observe that if w = xz, where (xyz; xyz) `sfr xz for a word xyz 2 L,a splicing rule r = (u1; v1; u2; v2) 2 R with u1 2 Suf (x), v1 2 Pref (yz),u2 2 Suf (xy) and v2 2 Pref (z), then this splicing can be simulated by a gsmthat, on input xyz, reads and outputs x, reads y without generating output,and reads and outputs z, while at the same time checking that u1; v1; u2; v2appear in the right places. Since the initial language is regular and since REGis closed under gsm mappings, this way of splicing leads to a regular language(let us call this language Kxz). However, the language K is in CF�REG, henceit cannot be de�ned with only this kind of self splicing. In fact, to create Kwe need an in�nite number of self splicings of the other kind, i.e., there are

56 NON-ITERATED SPLICING WITH REGULAR RULESin�nitely many words w 2 �sf (h)�Kxz with w = xyyz for some xyz 2 L suchthat (xyz; xyz) `sfr xyyz, where r = (u1; v1; u2; v2) 2 R and u1 2 Suf (xy),v1 2 Pref (z), u2 2 Suf (x), v2 2 Pref (yz). This is caused by the fact thatK � Kxz must be in�nite, since if it were �nite, then (K � Kxz) [Kxz = Kwould be regular.Since Kxz � K is regular, it must hold that Kxz � fa`baibaiban j `; n � 0and 0 � i � mg for a certain m � 0. Then K �Kxz should contain at least allwords of the form a`baibaiban with `; n � 0 and i > m.Hence there exists a w = a`bambamban 2 K with `;m; n > 2k, and suchthat w = xyyz as described above. Then either y = ap with p � 1 or y = aibajwith i; j � 0, because w contains exactly three b's and y occurs twice in w.If y = ap, then the two (adjacent) copies of y occur inside one of the fourgroups of consecutive a's in w. We discuss one of these cases in detail, theother cases can be handled in a similar way. Suppose that x = aq, for someq � 0, and that z = a`�q�2pbambamban (hence xyz = a`�pbambamban). Let r =(u1; v1; u2; v2) 2 R be such that (xyz; xyz) `sfr xyyz = w. Then u1 = a`1 andu2 = a`2 , for 0 � `1; `2 � k, while for v1 and v2 four combinations are possible:either v1 = an1 with 0 � n1 � k, or v1 = an1ban2 for 1 � n1 + 1 + n2 � k, andeither v2 = an3 for 0 � n3 � k, or v2 = an3ban4 for 1 � n3 + 1 + n4 � k. Nowalso the following self splicing of xyz using r is possible:(a`�pbambam�`1�n1a`1 j an1ban ; a`�p�`2�n3a`2 j an3bambamban)`sfr a`�pbambam�n1+n3bambambanfor which the resulting string contains too many b's.If y = aibaj with i; j � 0, then either x = a`�i and z = am�jban, orx = a`bam�i and z = an�j. In both cases the input word can be reconstructedas xyz = a`bamban. Again we only discuss one of the two cases, the other oneis analogous. In the second case, v1 = an1 for 0 � n1 � k, and either u1 = a`1for 0 � `1 � k or u1 = a`2ba`1 for 1 � `2 + 1 + `1 � k. For the second splicingsite, it is enough to know that it cuts the input word between a`bam�i andam�jban (note that m = i+ j). Now the following self splicing is possible:(a`ba`1 j an1am�`1�n1ban ; a`bam�i j am�jban) `sfr a`bam�j+`1banfor which the resulting string has less than three b's and thus does not belongto K.Hence there is no way of choosing x; y; z such that exactly each string in Kis the result of self splicing xyz using a rule from the �nite set of splicing rulesR. Consequently K 2 Ssf (REG;REG)� Ssf (REG;FIN). 2

NON-ITERATED SPLICING WITH REGULAR RULES 575.4 Length-decreasing splicingWhen splicing in length-decreasing mode, the resulting string should be strictlyshorter than the input strings. For the input strings x1u1v1y1 and x2u2v2y2,spliced using the rule (u1; v1; u2; v2), and the resulting string x1u1v2y2 thiscondition can also be written as jx1u1j < jx2u2j and jv2y2j < jv1y1j. Thereforethe construction that we used in the case of unrestricted (and same-length)splicing to replace a regular set of splicing rules by a �nite one, i.e., marking thecutting points in the input strings with extra, new symbols and cutting those o�by splicing, does not work here: the relation between the lengths of the inputstrings and the length of the resulting string is disturbed. Fortunately thiscan easily be repaired: like we have seen before, when x1u1v1y1 and x2u2v2y2are spliced using the rule (u1; v1; u2; v2), the substrings v1y1 and x2u2 do notappear in the result. Therefore we can replace the �rst letter of v1y1 and thelast letter of x2u2 by the new symbol and again remove these new symbolsby splicing. Indeed, these two letters exist, because when splicing in length-decreasing mode it has to be that jv1y1j > 0 and jx2u2j > 0, since otherwise itcan never be that jv1y1j > jv2y2j and jx2u2j > jx1u1j, respectively. Therefore,the replacement construction described above works for every pair of wordsfrom the initial language that can splice in length-decreasing mode.Since only the lengths of v1y1 and x2u2 are important, we simplify theconstruction by replacing each symbol in these two strings by �, where � is anew symbol.Note that a consequence of the above discussion is that the empty wordcannot be a term in any length-decreasing splicing. Therefore, contrary to thesituation in Theorem 5.3, here we can use a (non-erasing) gsm to perform theconstruction proposed above.Theorem 5.6 Let F be a family of languages closed under non-erasing gsmmappings. Then Sde(F ;FIN) = Sde(F ;REG).Proof. It is clear that Sde(F ;FIN) � Sde(F ;REG). For the converse inclusionwe use the following construction.Construction. For a splicing system h = (V;L;R) with L 2 F and (R) =L(A) for a deterministic �nite automaton A = (Q;V [f#; $g; Æ; q0; F) withQ \ (V [f#; $g) = ? and #; $ 62 V , we construct a splicing system h0 =(V [Q;L0; R0) as follows:L0 = f xup�jvyj�1 j xuvy 2 L; vy 6= � and Æ(q0; u#v) = p g[f �jxuj�1qvy j xuvy 2 L; xu 6= � and Æ(q; u#v) 2 F gR0 = f (�; p; q; �) j Æ(p; $) = qg

58 NON-ITERATED SPLICING WITH REGULAR RULESCorrectness. It is clear that R0 is �nite.Furthermore, the new initial language L0 can be constructed from L by anon-deterministic non-erasing gsm mapping that uses A. For example, whencomputing xup�jvyj�1 from xuvy the gsm guesses the start of the segment u onits input and simulates A on this segment (all the time copying the input tothe output). At the end of u, it simulates the step of A on # and writes p tothe output, where p is non-deterministically guessed. The gsm now continuesto simulate A on the input, writing a symbol � to the output for all but one ofthe remaining symbols of the input, while checking whether state p is reachedafter reading v in A. Some care has to be taken here. By de�nition, a gsmcannot use a �-transition to simulate A on the additional symbol # that is notpart of the input. As a solution, the gsm may keep in its �nite-state memorythe values of both Æ(q0; u0) and Æ(q0; u0#) for the pre�x u0 of u that has beenread. Since F is closed under non-erasing gsm mappings, L0 is in F .Moreover, from the discussion above and the similarity of this constructionto the construction used in the proof of Theorem 5.3, it is clear that �de(h0) =�de(h). 25.5 Length-increasing splicingTwo strings x1u1v1y1 and x2u2v2y2 can only yield the string x1u1v2y2 as theresult of splicing in length-increasing mode using the rule (u1; v1; u2; v2) ifjx1u1v2y2j > jxiuiviyij for i = 1; 2. These two requirements can be simpli-�ed to jx1u1j > jx2u2j and jv2y2j > jv1y1j, which immediately implies that italways must be that jx1u1j > 0 and jv2y2j > 0. Note that this means thatthe shortest words that can be made by length-increasing splicing are of lengthtwo, and the only way to create such a word, say ab, where a and b are symbols,is (a j ; j b) `inr ab, with r = (c1; �; �; c2) for c1 2 f�; ag and c2 2 f�; bg. Thisconsequence of the requirements for splicing in length-increasing mode causesthe fact that there are �nite languages (apart from �nite languages containingwords of length one) that are not in Sin(F1;F2) for all F1;F2, as explained bythe following example.Example 5.2 We show that fbb; babg 62 Sin(RE;RE).Suppose that fbb; babg = �in(h) for a splicing system h = (V;L;R) with a; b 2 Vand arbitrary L and R.First, observe that, as described above, the only possibility to create bb bythe length-increasing splicing of two initial words is the following: (b j ; j b) `inrbb, with r 2 f(c1; �; �; c2) j c1; c2 2 f�; bgg. Note that this means that the wordb should be in L.Second, to create bab we need a splicing of the form (ba j ; c j b) `in babor (b j c ; j ab) `in bab, where c 2 V [f�g. Thus it must be that ba 2 L or

NON-ITERATED SPLICING WITH REGULAR RULES 59ab 2 L. Then, using the rule r described above, we have (b j ; j ba) `inr bba or(ab j ; j b) `inr abb. Both these words are not in fbb; babg. 2In a similar way it can be proved that fbabg 62 Sin(RE;RE). Note, however,that fbbg = �in(h) for h = (fbg; fbg; f(b; �; �; b)g. Anyway, small words seemto cause problems when splicing in length-increasing mode. Indeed, any reg-ular language that does not contain words of length three and smaller is inSin(REG;FIN), as demonstrated by the following example.Example 5.3 Let K 2 REG, with K � �� for an alphabet �. Now let h =(V;L;R) be the splicing system de�ned byV = � [fhabi; [ab] j a; b 2 �gL = fw � habi j wab 2 K for some a; b 2 �g [f[ab] � ab j a; b 2 �gR = f(�; habi; [ab]; �) j a; b 2 �gIt is easy to construct a gsm that transforms K into fw � habi j wab 2 K forsome a; b 2 �g, and since REG is closed under gsm mappings and under unionwith �nite sets we have L 2 REG. Then the only splicings possible are of theform (w j habi ; [ab] j ab) ` wab 2 K, which is in length-increasing mode if andonly if jwj > 1. Clearly �in(h) consists of all words of K that have length atleast four, thus for each regular language M that consists of words with lengthat least four we have M 2 Sin(REG;FIN). 2Contrary to length-decreasing splicing, for length-increasing splicing it may bethat jv1y1j = 0 or jx2u2j = 0, thus the replacement construction we used thereto reduce the regular set of rules to a �nite one will not always work here.We did not succeed in �nding a di�erent construction that does always work,but we can adapt the replacement construction in such a way that the onlywords the new splicing system (with �nite rule set) cannot create by splicing inlength-increasing mode are words of length two or three. In view of the aboveexamples this seems a reasonable restriction.Theorem 5.7 Let F be a family of languages closed under non-erasing gsmmappings. Then for every language K in Sin(F ;REG) the language Kj>3 is inSin(F ;FIN).Proof. Let h = (V;L;R) be a splicing system with L 2 F and (R) = L(A)for a deterministic �nite automaton A = (Q;V [f#; $g; Æ; q0; F) with Q \ (V [f#; $g) = ? and #; $ 62 V . We construct a splicing system h00 = (V 00; L00; R00)with �nite rule set that de�nes a language `almost' equal to �in(h) as follows.

60 NON-ITERATED SPLICING WITH REGULAR RULESFirst attempt. We start by de�ning a splicing system h0 = (V [Q;L0; R0) withL0 = fxu p �jvyj�1 j xuvy 2 L; jvyj � 1 and Æ(q0; u#v) = pg [fxu p j xu 2 L and Æ(q0; u#) = pg [f�jxuj�1q vy j xuvy 2 L; jxuj � 1 and Æ(q; u#v) 2 Fg [fq vy j vy 2 L and Æ(q;#v) 2 FgR0 = f(�; p; q; �) j Æ(p; $) = qgAs before, L0 can be constructed from L by a non-deterministic non-erasinggsm mapping, and R0 is �nite.It is easy to understand that �in(h0) � �in(h), following the constructionof L0 and R0. If x0 = x1u1p�k and y0 = �`qv2y2 in L0, for suitable k and `,splice in increasing mode to give z = x1u1v2y2 using the rule r0 = (�; p; q; �) inR0, then there are strings x = x1u1v1y1 and y = x2u2v2y2 in L that splice togive again z using rule r = (u1; v1; u2; v2) in R. By construction (jxj = jx0j, orjxj = jx0j � 1 when jv1y1j = 0) we know that jxj � jx0j, thus jx0j < jzj impliesjxj < jzj. Mutatis mutandis, this argument is also valid for y and y0, so x andy splice in length-increasing mode as well.The reverse inclusion �in(h) � �in(h0) in general is not true: assume thatz 2 �in(h), for x = x1u1v1y1 2 L, y = x2u2v2y2 2 L and r = (u1; v1; u2; v2) 2 Rwith (x; y) `inr x1u1v2y2 = z, i.e., jx1u1j > jx2u2j � 0, jv2y2j > jv1y1j � 0 andÆ(q0; u1#v1) = p, Æ(p; $) = q, Æ(q; u2#v2) 2 F . If jv1y1j � 1 and jx2u2j � 1,then there are x0 = x1u1p�jv1y1j�1 2 L0, y0 = �jx2u2j�1qv2y2 2 L0 and r0 =(�; p; q; �) 2 R0 with (x0; y0) `r0 x1u1v2y2, which is in length-increasing modesince jx0j = jxj and jy0j = jyj.However, there are three cases in which z cannot be created by a length-increasing splicing in h0:(1) Suppose that jv1y1j = 0 and jx2u2j � 1. Then there are strings x1u1pand �jx2u2j�1qv2y2 in L0 and a rule r0 = (�; p; q; �) 2 R0 such that (x1u1 jp ; �jx2u2j�1q j v2y2) `r0 x1u1v2y2, which is in length-increasing mode if jx1u1j >jx2u2j, which follows from the original splicing (x; y) `inr z, and jv2y2j > jpj,which is only the case when in the original splicing indeed jv2y2j > 1. Thismeans that original splicings with jv1y1j = 0 and jv2y2j = 1, i.e., (x1u1 j ; x2u2 ja) `in x1u1a for an a 2 V , cannot be simulated in h0 (recall that jv2y2j = 0cannot occur when splicing in length-increasing mode).(2) Suppose that jx2u2j = 0 and jv1y1j � 1. Following a similar reasoning itcan be shown that original splicings with jx1u1j = 1, i.e., (a j v1y1 ; j v2y2) `inav2y2 for an a 2 V , cannot be simulated in h0.(3) Suppose that jv1y1j = jx2u2j = 0. Then an original splicing (x1u1 j ; jv2y2) `inr x1u1v2y2 can only be translated to (x1u1 j p ; q j v2y2) `inr0 x1u1v2y2if jx1u1j > 1 and jv2y2j > 1. Hence we cannot simulate original splicings withjx1u1j = 1 or jv2y2j = 1.

NON-ITERATED SPLICING WITH REGULAR RULES 61Second attempt. In order to accommodate almost all these cases we add ad-ditional strings to the initial language L0 and corresponding new rules to R0.De�ne h00 = (V 00; L00; R00) asV 00 = V [Q [fha�pi; ha+pi; hq�ai; hq+ai j a 2 V; p; q 2 QgL00 = L0 [fwha�pi j wa = xu 2 L; a 2 V and Æ(q0; u#) = pg [f�jxuj�2hq+aiab j xub 2 L; jxuj � 2; a; b 2 V andÆ(q; u#) 2 F or Æ(q; u#b) 2 F g [fbaha+pi�jvyj�2 j bvy 2 L; jvyj � 2; a; b 2 V andÆ(q0;#v) = p or Æ(q0; b#v) = pg [fhq�aiw j aw = vy 2 L; a 2 V and Æ(q;#v) 2 F gR00 = R0 [f(�; ha�pi; hq+ai; �);(�; ha+pi; hq�ai; �) j Æ(p; $) = q and a 2 V gIntuitively, the symbol ha�pi signals that a symbol a was removed to codestate p, whereas hq+ai indicates state q and the addition of symbol a.Again, L00 can be constructed from L by a non-deterministic non-erasinggsm mapping, and R00 is �nite.The new strings and new rules can only splice among themselves, and sim-ulate most of the remaining splicings of the original system (with regular ruleset): let us reconsider the three cases that did not work in h0.(1) Translating the original splicing (x1u1 j ; x2u2 j a) `inr x1u1a now gives(w j hb�pi ; �jx2u2j�2hq+bi j ba) ` wba = x1u1a, which is in length-increasingmode if and only if jwj > jx2u2j � 1. This means that it should be thatjx1u1j > jx2u2j and that follows from the original splicing. Hence all problemsin case (1) are solved.(2) Analogously, all problems in case (2) are solved.(3) Translating the original splicing (a j ; j v2y2) `inr av2y2, for an a 2 V ,gives now (ab j hb+pi ; hq�bi j w) ` abw = av2y2, which is in length-increasingmode if and only if jwj > 1, i.e., jv2y2j > 2. Similarly, the other `problemsplicing', (x1u1 j ; j a) ` x1u1a can only be translated to h00 if jx1u1j > 2.Consequently the only original splicings that cannot be simulated by h00 havejx2u2j = jv1y1j = 0 and jx1u1j = 1 while 1 � jv2y2j � 2, or jx2u2j = jv1y1j = 0and jv2y2j = 1 while 1 � jx1u1j � 2. All these cases yield words of length twoor three. 2

62 NON-ITERATED SPLICING WITH REGULAR RULES5.6 SummaryWe have investigated the transition from regular rule sets to �nite rule sets.As a result of that investigation we have given direct proofs for �ve equalitiesthat are implicit in Table 3.1, i.e., S(F ;FIN) = S(F ;REG) for F 6= LIN, andfor one new equality: S(LIN;FIN) = S(LIN;REG). Moreover, we have given acharacterization of S(LIN;FIN) and S(LIN;REG), for which no exact position inthe Chomsky hierarchy was known yet: S(LIN;FIN) = S(LIN;REG) = LIN�LIN.In the cases of same-length and length-decreasing splicing we could alsoprove that regular rule sets may be replaced by �nite ones, while for self splicingwe have shown that this is not even the case when starting with a regular initiallanguage: Ssf (REG;FIN) � Ssf (REG;REG). For length-increasing splicing weproved that for each system h with a regular rule set there exists a system h0with a �nite rule set such that �(h0) consists of all words of �(h) that havelength at least four. This means that Sin(F ;FIN) = Sin(F ;REG) provided thatwe do not consider words shorter than four symbols.Since the families given in Table 3.3 are upper bounds and not (necessarily)characterizations, the above mentioned (in)equalities for restricted splicing areall new.

Chapter 6Upper bounds for restrictednon-iterated splicingAs we have discussed in Section 3.3, for restricted non-iterated splicing sev-eral families S�(F1;F2) still have unknown smallest upper bounds within theChomsky hierarchy. We determine these upper bounds for non-iterated splic-ing in length-increasing, length-decreasing, same-length and self splicing mode,and we improve some of the known upper bounds.The open problems indicated in Table 3.3 involve either a regular initiallanguage and context-free splicing rules, or vice versa. For unrestricted non-iterated splicing the upper bounds for these two cases are determined in Lemma3.3 and Lemma 3.6 of [HPP97]. We use the ideas from the proofs of these twolemma's to de�ne, for each splicing system h = (V;L;R), the language C(L;R)that combines the initial language with the rules:C(L;R) = f x1u1#v1y1$x2u2#v2y2 j x1u1v1y1 ; x2u2v2y2 2 Land u1#v1$u2#v2 2 (R)g:This language turns out to be very helpful in determining upper bounds forrestricted splicing families. Note that �(h) = g(C(L;R)), where g is the gsmmapping that erases the two #'s and everything in between from each word inC(L;R).Consider the two cases mentioned above, i.e., let L 2 F1 and (R) 2 F2,with fF1;F2g = fREG;CFg. Using substitution of $ with the regular set V �$V �and concatenation on both sides with the regular set V �, the language (R) istransformed into the language R0 = fx1u1#v1y1$x2u2#v2y2 j u1#v1$u2#v2 2(R) and x1; y1; x2; y2 2 V �g. Furthermore, using shu�e with symbols andconcatenation, the language L0 = fx#y$w#z j xy; wz 2 Lg can be constructedfrom L. Since both REG and CF are closed under these four operations, weeither have L0 2 REG and R0 2 CF, or L0 2 CF and R0 2 REG. ClearlyC(L;R) = L0 \ R0, which is a context-free language since CF is closed under63

64 UPPER BOUNDS FOR RESTRICTED SPLICINGintersection with regular sets. This argument shows that both S(REG;CF) andS(CF;REG) are subfamilies of CF (cf. Table 3.1). In this chapter we seek toextend this argumentation to restricted splicing.6.1 Same-length splicingAs can be seen in Table 3.3, for Ssl(F1;F2) with F1 = LIN;CF and F2 =FIN;REG it is only known that all four families contain a non-context-freelanguage, as shown by the following example.Example 6.1 Let h = (fa; b; c; dg; L;R) be the splicing system de�ned byL = fanbnd j n � 1g [fd bncn j n � 1g 2 LIN(R) = fa# b $ d# bg 2 FINThe form of the rules causes the �rst term of each splicing to be of the formakbkd, and the second term of the form d bjcj , for some k; j � 1. Moreover, ifwe consider same-length splicing, we should have k = j. Then (ak j bkd ; d jbkck) `sl akbkck, using the only splicing rule in R. Consequently�sl(h) = fanbncn j n � 1gwhich is not a context-free language. 2It is an open problem whether the smallest upper bound of Ssl(F1;F2) in theChomsky hierarchy is CS or RE, for F1 and F2 as above, and for F1 = REGand F2 = LIN;CF. We solve this by proving that all languages in Ssl(REG;CF)and Ssl(CF;REG) are context-free valence languages over Z1 and thus context-sensitive (see Section 2.5).Theorem 6.1 Ssl(REG;CF) � CF(Z1) and Ssl(CF;REG) � CF(Z1).Proof. Let h = (V;L;R) be a splicing system of (REG;CF) type or (CF;REG)type. As described before, the language C(L;R) = f x1u1#v1y1$x2u2#v2y2 jx1u1v1y1 ; x2u2v2y2 2 L and u1#v1$u2#v2 2 (R)g is context-free.Now �sl(h) = �sl(C(L;R)), for the Z1-transducer �sl that transforms thestring x1u1#v1y1$x2u2#v2y2 2 C(L;R) into x1u1v2y2 while at the same timechecking whether jx1u1v1y1j = jx2u2v2y2j: it adds 1 for each symbol of x1u1v1y1,it subtracts 1 for each symbol of x2u2v2y2, and it copies x1u1 and v2y2 to theoutput.Since CF = CF(Z0) and since (as shown in Section 2.5) applying a Z`-transduction to a CF(Zk) language gives a CF(Zk+`) language, we have �sl(h) =�sl(C(L;R)) 2 CF(Z1). 2

UPPER BOUNDS FOR RESTRICTED SPLICING 65This result enables us to �ll in six of the missing entries in Table 3.3:Ssl(REG;F2) � CF(Z1) for F2 = LIN;CF, andSsl(F1;F2) � CF(Z1) for F1 = LIN;CF and F2 = FIN;REG.6.2 Splicing in in or de modeFirst, we give an aÆrmative answer to a question asked in [KPS96, p.238]: doesSin(REG; LIN) contain a non-context-free language? We do this by adapting anexample given in the proof of Lemma 10 from that same paper.Example 6.2 Let h = (fa; b; cg; L;R) be the splicing system de�ned byL = c b�a�b�c 2 REG(R) = fcbman#bnc$c#bmc j m;n � 0g 2 LINThe only splicings possible using the rule cbman#bnc$c#bmc are of the form(cbman j bnc ; c j bmc) ` cbmanbmc. If the splicing has to be done in length-increasing mode, then we must have m+ n+ 1 > 1 and m+ 1 > n+ 1 (recallthat the requirements jx1u1v2y2j > jx1u1v1y1j and jx1u1v2y2j > jx2u2v2y2j canbe simpli�ed to jv2y2j > jv1y1j and jx1u1j > jx2u2j, respectively), hence�in(h) = fcbmanbmc j m;n � 0 and m > ngwhich is not a context-free language. 2Hence we have the following result.Lemma 6.2 Sin(REG; LIN)� CF 6= ?Similar to the case of same-length splicing, we prove that both Sin(REG;CF)and Sin(CF;REG) are subfamilies of CF(Z2). For Sin(REG;CF) this answers thequestion whether the smallest upper bound in the Chomsky hierarchy is CS orRE, whereas for Sin(CF;REG) this improves the known upper bound CS.Theorem 6.3 Sin(REG;CF) � CF(Z2) and Sin(CF;REG) � CF(Z2).Proof. Let h = (V;L;R) be a splicing system of (REG;CF) type or of (CF;REG)type. Construct the context-free language C(L;R) from L and R as be-fore. Now a non-deterministic Z2-transducer �in can transform each wordx1u1#v1y1$x2u2#v2y2 2 C(L;R) for which jx1u1j > jx2u2j and jv2y2j > jv1y1jto x1u1v2y2. To compare the lengths of x1u1 and x2u2 it uses its `�rst counter'as follows: for the �rst letter of x1u1 (note that, because of the requirementsfor in splicing, x1u1 has to be non-empty) it adds 0, for each other letter ofx1u1 it non-deterministically adds 0 or 1, hence for x1u1 an amount � < jx1u1j

66 UPPER BOUNDS FOR RESTRICTED SPLICINGis added. For each letter of x2u2 it subtracts 1, hence an amount � = �jx2u2jis added. At the end of the computation this component of the counter hasto have the value 0, which means that � + � = 0, i.e., � = jx2u2j and thusjx2u2j < jx1u1j. The lengths of v1y1 and v2y2 are compared in an analogousway, using the second counter.Clearly then �in(h) = �in(C(L;R)) 2 CF(Z2). 2We can now �ll in two entries of Table 3.3 and improve four of the upper boundsgiven there:Sin(REG;F2) � CF(Z2) for F2 = LIN;CF, andSin(F1;F2) � CF(Z2) for F1 = LIN;CF and F2 = FIN;REG.The problem whether length-decreasing splicing of a regular initial languageand a linear set of rules can yield a non-context-free language is also open([KPS96]), and again it can be solved by adapting an (other) example given inthe proof of Lemma 10 in [KPS96].Example 6.3 Replace the initial language of Example 6.2 byL0 = c b�a�b�c [c�b�c 2 REGand let h0 = (fa; b; cg; L0; R) with R as in Example 6.2. Now the only possiblelength-decreasing splicings are (cbman j bnc ; c`c j bmc) `de cbmanbmc, where1 +m+ n < `+ 1 and m+ 1 < n+ 1, thus�de(h0) = fcbmanbmc j m;n � 0 and m < ngwhich is not in CF. 2Consequently we have the following result.Lemma 6.4 Sde(REG; LIN)� CF 6= ?Clearly the constructions for in splicing can be adapted for de splicing, whichgives the following theorem.Theorem 6.5 Sde(REG;CF) � CF(Z2) and Sde(CF;REG) � CF(Z2).Again, this gives the more general resultsSde(REG;F2) � CF(Z2) for F2 = LIN;CF andSde(F1;F2) � CF(Z2) for F1 = LIN;CF and F2 = FIN;REG.

UPPER BOUNDS FOR RESTRICTED SPLICING 676.3 Self splicingSelf splicing linear or context-free initial languages with �nite or regular rulescan give a language outside CF, but can it also yield a non-context-sensitivelanguage? We prove that the answer to this question is negative. We start byillustrating that even the self splicing of a regular initial language with a �niteset of rules can lead outside CF.Example 6.4 (See also [PRS98, proof of Theorem 11.1].)Let h = (fa; b; c; dg; L;R) be the splicing system de�ned byL = a b�c�d 2 REGR = f# d $ a#g 2 FINThen (abmck j d; a j bmckd) `sf abmckbmckd and thus�sf (h) = fabmckbmckd j m; k � 0gwhich is not context-free. 2Theorem 6.6 Ssf (CF;REG) � CSProof. Let h = (V;L;R) be a splicing system with L 2 CF and (R) 2 REG.We show how to obtain an lba that can check whether a word on its input tapebelongs to �sf (h) or not. Since the languages accepted by lba's are exactlythe context-sensitive languages, this proves that Ssf (CF;REG) � CS.As explained in Section 5.3, �sf (h) can be described as Lxz [Lxyyz, whereLxz = fxz j xyz 2 L with u1 2 Suf (x); v1 2 Pref (yz);u2 2 Suf (xy); v2 2 Pref (z) for a (u1; v1; u2; v2) 2 Rg andLxyyz = fxyyz j xyz 2 L with u1 2 Suf (xy); v1 2 Pref (z);u2 2 Suf (x); v2 2 Pref (yz) for a (u1; v1; u2; v2) 2 Rg:Let w be the word that is on the tape of the lba at the beginning of itscomputation. The lba starts by guessing that w belongs either to Lxz or toLxyyz.In the case of Lxz, let 1 and 2 be symbols not in V and let L1 = fx1y2z jxyz 2 L with u1 2 Suf (x); v1 2 Pref (yz); u2 2 Suf (xy); v2 2 Pref (z) for a(u1; v1; u2; v2) 2 Rg. Note that L1 can be obtained from L by a gsm mappingsimilar to the gsm mapping described in the proof of Theorem 5.5 (but this onehas to search for the two cutting points simultaneously, because the splicingsites u1v1 and u2v2 can overlap and the gsm is not allowed to go back on itsinput). Moreover, Lxz can be constructed from L1, also by a gsm mapping.This means that there exists a context-free grammar G with L(G) = Lxz. Now

68 UPPER BOUNDS FOR RESTRICTED SPLICINGthe lba can check whether w 2 L(G) by simulating computations of G on its`second track'.In the case of Lxyyz, the lba guesses a non-empty subword y and checkswhether w = xyyz and whether the splicing sites u1v1 and u2v2 occur in theright places. If so, then it may mark (or erase) each letter in the second copy ofy, and then check whether the rest of w, i.e., xyz, belongs to the context-freelanguage L. 2Hence we have Ssf (F1;F2) � CS for F1 = LIN;CF and F2 = FIN;REG. In fact,this upper bound can be improved to the family 2DGSM(CF), which is a strictsubfamily of CS (see [HV02]).Example 6.4 implies that also self splicings of (REG; LIN) type and (REG;CF)type can yield languages outside CF. We prove that they can even de�ne non-context-sensitive languages, i.e., we prove that the smallest upper bound in theChomsky hierarchy of Ssf (REG;CF) and Ssf (REG; LIN) is RE.Lemma 6.7 Let L1; L2 be linear languages over � and let 0 be a symbol notin �. Then 0L1=L2 2 Ssf (REG;CF).Proof. Assume that L1 and L2 are linear languages with L1; L2 � �� for somealphabet �. Let 0; 1; 2 62 � be new symbols, and de�ne h = (�[f0; 1; 2g; L;R)by L = 0�� 1�� 2 2 REG(R) = f0u#1 v 2 $ 1w 2# j uv 2 L1; w 2 L2gSince LIN is closed under concatenation with symbols and under shu�e withstrings (but not under concatenation) we have (R) 2 LIN � LIN � CF.We start by proving that �sf (h) � 0L1=L2. Let x 2 L and (x; x) `r zfor an r = (0u; 1v2; 1w2; �) 2 R. Then because of the form of the axiomsand the �rst splicing site we must have x = 0u1v2. Moreover it must holdthat 1v2 = 1w2, i.e., v = w, because we are considering self splicing. Clearly(0u j 1v2 ; 0u1v2 j) `sfr z = 0u 2 0L1=L2, since uv 2 L1 and v = w 2 L2 byconstruction.Now take z 2 L1=L2, i.e., there is a y 2 L2 such that zy 2 L1. Accordingto the de�nition of h there is a splicing rule r = (0z; 1y2; 1y2; �) 2 R and anaxiom 0z1y2, and so (0z j 1y2 ; 0z1y2 j) `r 0z 2 �sf (h). 2Since every RE language can be written as the quotient of two linear languages([LLR85, Proposition 13]), Lemma 6.7 implies the following.Corollary 6.8 Let K be a language over � and let 0 be a symbol not in �. IfK 2 RE, then 0K 2 Ssf (REG;CF).

UPPER BOUNDS FOR RESTRICTED SPLICING 69Since CS is closed under quotient with symbols, 0K 2 CS would implyK 2 CS.Consequently K 2 RE � CS implies 0K 2 RE � CS, thus the smallest upperbound in the Chomsky hierarchy of Ssf (REG;CF) is RE, as formulated in thefollowing theorem.Theorem 6.9 Ssf (REG;CF) contains languages from RE� CS.The same result holds for Ssf (REG; LIN), i.e., we can give a construction thatuses a set of rules R with (R) 2 LIN instead of the set R from the proofof Lemma 6.7, for which (R) 2 LIN � LIN. We do this by reconsideringthe above mentioned proof that every recursively enumerable language is thequotient of two linear languages. In the following example we use the mainidea of that proof: one step of a Turing machine can be captured by a lineargrammar, provided that we represent one of the two con�gurations involvedby its mirror image. This idea originates from [Har67], where it is shown thatevery recursively enumerable set is the quotient of two context-free languages.
0 x# 1 x1 : : : xk xk+1 yR̀ : : : yR1 yR0 2 $ 1 z1 z2 : : : z`+1 xRk : : : xR1 xR0 2 #

x0 2 aq0xB�bR: : : R : : :y0 ` z1y1 ` z2 : : :y` ` z`+1: : :
Figure 6.1: The structure of strings in KM (Example 6.5)Example 6.5 Let M = (Q;�;�; Æ; q0; B; F) be a Turing machine. For thisexample we write the con�gurations of M as strings of the form a��Q��b, fornew symbols a and b. We extend the notation `M for computational steps ofM to this way of writing con�gurations.Let the language KM consist of the words0 x# 1 x1 : : : xk xk+1 yR̀ : : : yR1 yR0 2 $ 1 z1 z2 : : : z`+1 xRk : : : xR1 xR0 2 #where 0; 1; 2;#; $ are new symbols,for a string w, wR denotes the mirror image of w,x 2 ��,

70 UPPER BOUNDS FOR RESTRICTED SPLICINGx0; : : : ; xk+1; y0; : : : ; y`; z1; : : : ; z`+1 2 a��Q�� b, for k; ` � 0,yi `M zi+1 for 0 � i � `,x0 2 a q0 xB� b, andxk+1 2 a�� F ��b.So each xRi ; xi+1; yRj ; zj+1, where 0 � i � k and 0 � j � `, is (the mirrorimage of) a potential con�guration of M, and we use the new symbols a andb to separate them from each other. A picture may clarify the situation: seeFigure 6.1.KM is a linear language, generated by the following grammar. The startsymbol is S, a; b; c range over �, d 2 �, f 2 F and p; q 2 Q.S ! 0T 2# U 0 ! aU 0 a j pU 00 pT ! T 0 q0 a U 00 ! aU 00 a j bU bT 0 ! dT 0 d j T 00 V ! aV 0T 00 ! T 00B j #1U b V 0 ! aV 0 j f V 00U ! aU 0 a j V V 00 ! aV 00 j bWW ! bW 0 bW ! b a pW 00 b q B b if (p; a; q; b; R) 2 ÆW 0 ! aW 0 aW 0 ! a p cW 00 q c b if (p; a; q; b; L) 2 ÆW 0 ! a paW a q B b j a pa 2 $ 1a q B b if (p; a; q; b; L) 2 ÆW 0 ! a pW 00 b q if (p; a; q; b; R) 2 ÆW 0 ! a pW 00 q b if (p; a; q; b;N) 2 ÆW 00 ! aW 00 a j aW a j a 2 $ 1aHere T creates x#1 and xR0 , U generates xi and xRi for each i 2 f1; : : : ; kg, Vderives xk+1 and W generates yRi and zi+1 for each i 2 f0; : : : ; `g. Note that,since a; b and c may also stand for the blank symbol, we can get con�gurationswith a lot of unnecessary blanks, but we do not miss any con�guration. 2Theorem 6.10 Let K be a language over � and let 0 be a symbol not in �.If K 2 RE, then 0K 2 Ssf (REG; LIN).Proof. Construction. Let K = L(M) for a deterministic Turing machineM = (Q;�;�; Æ; q0; B; F), and let KM be the linear language as de�ned inExample 6.5. Now �sf (h) = 0K, for the splicing system h = (V;L;R) de�nedby V = � [f0; 1; 2g [Q [fa;bgL = 0�� 1 (� [Q [fa;bg)� 2 2 REG(R) = KM 2 LINwhere 0; 1; 2 62 � [Q [fa;bg.

UPPER BOUNDS FOR RESTRICTED SPLICING 71Correctness. The splicing rules of h are of the form0 x 1 x1 : : : xk+1 yR̀ : : : yR1 yR0 21 z1 : : : z`+1 xRk : : : xR1 xR0 2with x1; : : : ; xk+1; y0; : : : ; y`; z1; : : : ; z`+1 2 a��Q�� b, x0 2 a q0 xB� b andyi `M zi+1 for 0 � i � `.Because of the form of the initial strings and of the rules, the �rst term ofthe splicing must be of the form 0x1x1 : : : xk+1yR̀ : : : yR1 yR0 2. Since we considerself splicing, this is also the second term. The second splicing site now enforcesthe equality x1 : : : xk+1 yR̀ : : : yR1 yR0 = z1 : : : z`+1 xRk : : : xR1 xR0 ;and the marking with a and b ensures that k = `, xi = zi for 1 � i � k + 1and yj = xj for 0 � j � k. Hence x0 2 a q0 xB� b is the initial con�guration ofM for the input word x, xi = yi `M zi+1 = xi+1 for 0 � i � k, and xk+1 is theend con�guration ofM for x. Thus x0 `M x1 `M : : : `M xk+1 is an acceptingcon�guration sequence for x. Consequently, if 0 x 1 x1 : : : xk+1 yR̀ : : : yR1 yR0 2splices with itself to give 0x, then x 2 L(M).For the proof in the reverse direction, the above can be read backwards. 2Theorem 6.11 Ssf (REG; LIN) contains languages from RE� CS.6.4 SummaryWe have solved all open problems indicated in Table 3.3, and improved some ofthe known CS upper bounds given there. In the following table we summarizethe results on the upper bounds of the four restricted splicing modes that weconsidered.F2 ! FIN REG LIN CF FIN REG LIN CFf REG REG LIN CF CF CF RE REin REG REG CF(Z2) CF(Z2) CF(Z2) CF(Z2) CS CSde REG REG CF(Z2) CF(Z2) CF(Z2) CF(Z2) RE REsl LIN LIN CF(Z1) CF(Z1) CF(Z1) CF(Z1) RE REsf CS CS RE RE CS CS RE REF1 = REG F1 = LIN;CFTable 6.1: Upper bounds of S�(F1;F2) { updated

Part IISticker systems

73

Chapter 7De�nitions, examples andresearch topics7.1 Sticker systemsSticker systems are introduced in [KP+98] as a formal language model forthe self-assembly phase of Adleman's experiment ([Adl94]). Self-assembly isthe ability of complementary parts of single stranded pieces of dna to sticktogether, thereby possibly leaving an overhanging `sticky end' to which anotherpart of single stranded dna can stick, and so on. In this way a (partially) doublestranded piece of dna is created.Fully double stranded dna molecules can be written as a pair of `matching'strings over the alphabet fa; c; g; tg of bases. Alternatively, for the matchingbase pairs we may use the symbols �at�, �ta�, �cg�, �gc�. We appreciate both ap-proaches, and will not distinguish between a (two-dimensional) pair of match-ing strands like (agac; tctg) and a (one-dimensional) string of paired bases like�at��gc��at��cg�.For our purposes we will consider an alphabet � of `abstract' dna bases,and a relation � � ��� representing the complementarity relation. We extend� to a subset of �� � �� by demanding that two strings are complementaryif they are of equal length and their letters are one by one complementary:(a1 : : : an; b1 : : : bm) 2 �, for ai; bj 2 �, 1 � i � n, n � 0, and 1 � j � m,m � 0, if n = m and (a`; b`) 2 � for each 1 � ` � n.We de�ne the alphabet ��, representing matching pairs of symbols, as con-sisting of all symbols �ab� where (a; b) 2 � and a; b 2 �. As explained above, weidentify ��� with the subset � of �����: �a1b1� : : : �anbn� represents the same doublestranded molecule as (a1 : : : an; b1 : : : bn), for (ai; bi) 2 � and ai; bi 2 �. Notethat thus � 2 ��� equals (�; �) 2 �. We will also use �a1:::anb1:::bn� as an abbreviationof �a1b1� : : : �anbn�.We give a de�nition of sticker systems that is equivalent to the de�nition75

76 STICKER SYSTEMSgiven in [KP+98], but stated directly in terms of strings, avoiding a lengthyde�nition of a `sticker operation'. In [FP+98], [PR98] and [PRS98] more generalsticker systems are investigated; the sticker systems from [KP+98], which weconsider here, are called simple regular sticker systems in [PR98, PRS98].De�nition 7.1 A sticker system is a 5-tuple
 = (�; �;Du;D`; A) where � isan alphabet, � � ��� is the complementarity relation, Du;D` � �+ are �nitesets of upper and lower stickers, and A � �� � �� is a �nite set of axioms. 2We call a pair (x0x1 : : : xn; y0y1 : : : ym) 2 � a (complete) computation of
 if(x0; y0) 2 A, x1; : : : ; xn 2 Du and y1; : : : ; ym 2 D`, for some n;m � 0. If n = m,then (x0x1 : : : xn; y0y1 : : : ym) is called a fair computation of
. If there are noi and j, with 0 � i < n and 0 � j < m, such that (x0x1 : : : xi; y0y1 : : : yj) is acomplete computation of
, then (x0x1 : : : xn; y0y1 : : : ym) is called a primitivecomputation. A computation that is both primitive and fair is called primitivefair. If we do not care about the exact composition of a computation we write`(x; y) 2 � is a computation', meaning that there are (x0; y0) 2 A, x1; : : : ; xn 2Du and y1; : : : ; ym 2 D` such that x = x0x1 : : : xn and y = y0y1 : : : ym. We saythat (x0x1 : : : xi; y0y1 : : : yj), for some i; j � 0, is a partial computation of
 if(x0; y0) 2 A, x1; : : : ; xi 2 Du, y1; : : : ; yj 2 D`, and if jx0x1 : : : xij � jy0y1 : : : yjjimplies that there is a w 2 Pref (y0y1 : : : yj) such that (x0x1 : : : xi; w) 2 �,whereas jx0x1 : : : xij > jy0y1 : : : yjj implies that there is a v 2 Pref (x0x1 : : : xi)such that (v; y0y1 : : : yj) 2 �.Note that in a primitive computation only at the end a so-called `blunt end'occurs { i.e., the end of the computation is the �rst position where there is nosticky end { whereas in a non-primitive computation there is additionally atleast one `intermediate blunt end'.Although we are mainly interested in the formal language theoretic aspectsof sticker systems, we keep the analogy with molecules and dna in mind, andwill often write, for instance, `(x; y) 2 � is a double stranded string' or `x is theupper strand of (x; y) 2 �'.Observe that our de�nition of computation di�ers from the one used in theliterature: there a computation is a sequence of what we call partial computa-tions, where the �rst element of the sequence is an axiom, the next is an exten-sion of the previous element with one sticker, and so on until the last element,which is completely double stranded. In other words, in the literature a compu-tation is de�ned both by the axiom and stickers used in it, and by the order inwhich the stickers are added. Hence one computation (x0x1 : : : xn; y0y1 : : : ym)in our terminology corresponds to several computations according to the de�-nition from the literature.In our de�nition we have abstracted from the order in which stickers areadded to get a complete computation. Indeed, this order has no e�ect onthe result being a complete computation nor on the fairness or primitivity of

STICKER SYSTEMS 77the computation. Nevertheless, we will sometimes �nd it useful to think of acomputation as if it was constructed by adding stickers in a certain order.7.2 Sticker languagesLet
 = (�; �;Du;D`; A) be a sticker system. The (unrestricted) molecularlanguage generated by
 is de�ned asML(
) = f (x; y) 2 � j (x; y) is a computation of
 g:The fair molecular language generated by
 is de�ned asMLf (
) = f (x; y) 2 � j (x; y) is a fair computation of
 g;the primitive molecular language asMLp(
) = f (x; y) 2 � j (x; y) is a primitive computation of
 gand the primitive fair molecular language asMLpf (
) = f (x; y) 2 � j (x; y) is a primitive fair computation of
 gFurthermore, the (unrestricted) sticker language generated by
 is the projec-tion onto the �rst (upper) component of the molecular language,L(
) = f x 2 �� j (x; y) 2ML(
) for some y 2 �� gand analogously for Lf (
), Lp(
) and Lpf(
), the fair, primitive and primitivefair sticker languages generated by
, respectively.Example 7.1 Let
 = (�; �;Du;D`; A) be the sticker system de�ned by� = fa; bg� = idDu = faa; abgD` = faa; bgA = f (ba; b) ; (b; ba) ; (bb; bb) gHere id denotes the identity relation. Four sample complete computations of
,given by their upper and lower strand, are depicted below. We have indicatedthe beginning and end of axioms with [and i, respectively, and the beginningand end of each sticker with h and i, respectively.[biha bi[b aihbi [b aiha bi[bihaaihbi [bihaaiha bihaai[b aihaaihbihaai [b aihaaiha bihaaihaai[bihaaihaaihbihaaihaai

78 STICKER SYSTEMSThe �rst of these computations is both fair and primitive, the second is primi-tive but not fair, the third is fair but not primitive, and the last one is neitherprimitive nor fair. It is fairly easy to argue thatL(
) = ba�b(aa)�Lp(
) = ba�bLf (
) = b(aa)�ab(aa)� [bb(aa)�Lpf (
) = b(aa)�ab [bb 2Example 7.2 Consider the following sticker system, a slight extension of theone given in the proof of Theorem 3 in [KP+98]:
 = (fa; b; cg; �;Du ;D`; A) with� = f(a; a); (b; b); (b; c)gDu = faa; bgD` = fa; bcgA = f(�; �)gAll computations of
 are composed of `blocks' that consist either of aa in theupper strand and aa in the lower strand, or of bb in the upper strand and bcin the lower strand. Moreover, each of the blocks containing only a's uses oneupper sticker and two lower stickers, whereas each other block uses two upperstickers and one lower sticker, as shown below.[i ha ai hbihbi hbihbi ha ai[i haihai hb ci hb ci haihaiHence only one computation of
 is primitive: the one that uses only the axiom.Furthermore, the only way to make a computation fair is to ensure that it usesan equal amount of both kinds of blocks. Now clearlyML(
) = f �aaaa�; �bbbc� g�MLp(
) = f � gMLf (
) = f �xy� 2ML(
) j #a(x) = #b(x) gMLpf (
) = f � gand consequently L(
) = faa; bbg�Lf (
) = fx 2 L(
) j #a(x) = #b(x)g 2

STICKER SYSTEMS 79Obviously, for each sticker system
, L(
) can be obtained from ML(
) byapplying a coding. However, we may not reverse this: in general ML(
) is notthe image of L(
) under an inverse coding, as is clear from Example 7.2.In this thesis we consider sticker languages rather than the molecular vari-ants. This can be justi�ed using the following representation result, that impliesthat a sticker system
 can always be changed into a sticker system
0 such thatthe sticker language of
0 gives exactly the same information as the molecularlanguage of
.Theorem 7.1 For every sticker system
 = (�; �;Du;D`; A) there is a stickersystem
0 = (��; id;D0u;D 0̀ ; A0) such that ML(
) = L(
0).Proof. Let hu : ��� ! �� be the homomorphism that maps �ab� to a, and leth` : ��� ! �� be the homomorphism that maps �ab� to b. Note that (x; y) 2 �if and only if �xy� 2 h�1u (x) \ h�1` (y). In words, given (x; y) 2 �, if we guessa `lower strand' y0 complementary to x (using h�1u) and an `upper strand' x0complementary to y (using h�1`), then we have guessed right if and only if�xy0� = �x0y �.Construction. We construct
0 = (��; id;D0u;D 0̀ ; A0) as follows:D0u = h�1u (Du)D 0̀ = h�1` (D`)A0 = f(x; y) j (hu(x); h`(y)) 2 AgCorrectness. We start by proving that ML(
) � L(
0). Let (x; y) 2 ML(
),i.e., (x; y) 2 � and there are (x0; y0) 2 A, x1; : : : ; xn in Du and y1; : : : ; ym inD`, with n;m � 0, such that x = x0x1 : : : xn and y = y0y1 : : : ym. Then x andy can also be written as follows:x = x0 x1 : : : xn = x00 x01 : : : x0my = y00 y01 : : : y0n = y0 y1 : : : ymwhere xi; yj as before, (xi; y0i) 2 � and (x0j ; yj) 2 � (for 0 � i � n and 0 �j � m). According to the de�nitions of A0, D0u and D 0̀ , this means that(�x0y00�; �x00y0�) 2 A0, �xiy0i� 2 D0u and �x0jyj� 2 D 0̀ for 1 � i � n and 1 � j � m. Thisimplies that (�x0y00��x1y01� : : : �xny0n�; �x00y0��x01y1� : : : �x0mym�) = (�xy�; �xy�) 2 ML(
0), hence�xy� = (x; y) 2 L(
0).Note that the reasoning above is also valid if read backwards, which provesL(
0) �ML(
), and consequently L(
0) =ML(
). 2

80 STICKER SYSTEMSSince the stickers (axioms) of
0 have the same length as the correspondingstickers (axioms) of
, the number of upper and lower stickers used in a com-putation does not change when passing from
 to
0. Consequently both fairnessand primitivity are preserved.Corollary 7.2 For every sticker system
 = (�; �;Du;D`; A) there is a stickersystem
0 = (��; id;D0u;D 0̀ ; A0) such that MLf (
) = Lf (
0), MLp(
) = Lp(
0)and MLpf (
) = Lpf (
0).From Theorem 7.1 we can derive a rather unexpected but useful normal form forsticker systems: without changing the sticker language, we can always replacethe complementarity relation � by the identity id on the alphabet �. Notethat, of course, the molecular language does change if � was not already equalto id.The idea behind this derivation is the following: instead of guessing dou-ble stranded lower stickers for the new system starting from lower stickers inthe original system, we can guess just the upper strands corresponding to theoriginal lower stickers (and similar for the axioms; the upper stickers remainthe same). In other words, we use the same procedure as in the proof of The-orem 7.1, but we use only part of the answers that result from it.Theorem 7.3 For every sticker system
 = (�; �;Du;D`; A) a sticker system
0 = (�; id;Du;D 0̀ ; A0) can be constructed with L(
0) = L(
).Proof. Construction. Let D 0̀ and A0 be de�ned asD 0̀ = fw 2 �+ j (w; v) 2 � for some v 2 D`gA0 = f(x0; z0) j (x0; y0) 2 A for some y0; and (z0; y0) 2 �gCorrectness. Assume that x 2 L(
), i.e., there is a y such that (x; y) 2 �,x = x0x1 : : : xn and y = y0y1 : : : ym, where (x0; y0) 2 A, xi 2 Du for 1 � i � nand n � 0, and yj 2 D` for 1 � j � m and m � 0. Then x can also bewritten as x = z0z1 : : : zm, where (zk; yk) 2 � for 0 � k � m. According to thede�nition of A0 then (x0; z0) 2 A0, and from the de�nition of D 0̀ it follows thatzj 2 D 0̀ for 1 � j � m. Therefore (x0x1 : : : xn; z0z1 : : : zm) = (x; x) 2 ML(
0),hence x 2 L(
0).To prove that L(
0) � L(
), the above can be read backwards. 2Obviously, again the number of stickers used and the lengths of the stickers arenot changed, hence the following holds as well.Corollary 7.4 For every sticker system
 = (�; �;Du;D`; A) a sticker system
0 = (�; id;Du;D 0̀ ; A0) can be constructed with Lf (
0) = Lf (
), Lp(
0) = Lp(
)and Lpf (
0) = Lpf (
).

STICKER SYSTEMS 817.3 Families of sticker languagesThe family of all sticker languages is denoted SL, while the families of fair,primitive and primitive fair sticker languages are denoted SLf , SLp and SLpf ,respectively.We recall from the literature the results concerning the relations betweenSL, SLf , SLp, SLpf and the Chomsky families. We do this rather elaborately,because we will use some of these constructions later on.First, SL � REG. When a sticker is added to a partial computation, thiscan always be done in the strand opposite to the strand containing the currentsticky end. Therefore, the current sticky end never needs to be longer thanthe maximal lengths of the stickers and the two components of each axiom.Consequently, a �nite number of states of a �nite automaton, where each statestands for a speci�c sticky end, can control the computation in the same wayas the sticky ends do ([KP+98, Lemma 1]).Second, discarding in the previous construction the transitions that allow acomplete computation to be continued yields a �nite automaton for the primi-tive sticker language of the sticker system under consideration ([KP+98, Lemma2]), hence SLp � REG. Indeed, primitivity is a `local' property, hence easy tocheck using the states of a �nite automaton.Example 7.3 Consider the sticker system
 given in Example 7.1, that hasupper stickers aa and ab, lower stickers aa and b, and axioms (ba; b); (b; ba)and (bb; bb). From the de�nition of
 we derive that, when constructing stickerby sticker a complete computation of
, we will never need other sticky endsthan the following: one a in the upper or lower strand (written as a� or �a ,respectively), one b in the upper strand (b�), the blunt end (��) and aa in theupper or lower strand (aa� or �aa).As an example, observe the following sequence of seven (partial) computa-tions of
.[bi[b ai [bihaai[b ai [bihaai[b aihaai [bihaaihabi[b aihaai [bihaaiha bi[b aihaaihbi[bihaaiha bi[b aihaaihbihaai [bihaaiha bihaai[b aihaaihbihaaiWe use this sequence to explain how to construct a lazy �nite automaton Asuch that L(A) = L(
). Its states represent the occurring sticky ends, whileits transitions are labelled with the pre�x of the applied sticker that matchesthe current sticky end. We add a new initial state s from which the sticky endsresulting from the axioms are reached.The sequence starts with the axiom (b; ba), meaning that the �rst letter ofthe string is a b and we have a sticky end �a ; in the automaton this is described

82 STICKER SYSTEMSby the transition (s; b; �a). Then an upper sticker aa is used, adding the lettera to the string and leaving an overhang a in the upper strand; for this we addthe transition (�a ; a; a�), and so on.
) s -b �b �a6a?a -a b� -b �� -�� aa6�?aa �aa A6bb

a� aa�
Clearly, L(A) = ba�b(aa)� = L(
). When considering only the primitive com-putations of
 it suÆces to remove all paths that continue from the �nal state(��) of A, since that is the state that marks an intermediate blunt end. 2Third, not every regular language can be generated as the unrestricted languageof a sticker system: REG 6� SL. Suppose that
 is a sticker system that generatesba�b. Since the number of a's in words from ba�b can be arbitrarily large, theremust be an upper sticker a` and a lower sticker ak in
, with `; k � 1. But thena complete computation for baib, for some i � 0, can always be extended to a(non-primitive) complete computation for baiba`k ([PR98, Theorem 10]).Fourth, we have REG � COD(SL), which can be seen as follows. Stickersystems are formalizations of Adleman's use of self-assembly to �nd paths in agiven graph. Since a �nite automaton is also a graph, for each �nite automatona sticker system can be constructed of which the computations represent pathsfrom the intial state to a �nal state of the automaton. We need a coding toremove the symbols representing the states from the resulting strings ([PRS98,Theorem 4.8], [KP+98, Lemma 5]).Fifth, REG � COD(SLp): the stickers in the above mentioned system arede�ned in such a way that the �rst symbol of an upper sticker never matches the�rst symbol of a lower sticker, thereby ensuring that each computation of the�nite automaton is simulated by a primitive computation of the correspondingsticker system ([PRS98, Theorem 4.8]).Sixth, addition of a few extra axioms to the above construction yields afair computation for each computation of the �nite automaton. Consequently,REG � COD(SLf) ([PRS98, Corollary 4.10]) and REG � COD(SLpf).We illustrate these constructions in an example.

STICKER SYSTEMS 83Example 7.4 Consider the �nite automaton A = (fs; t; fg; fa; bg; f(s; b; t);(t; a; t); (t; b; f)g; s; ffg), for which L(A) = ba�b. We de�ne the alphabet � as� = fs; t; fg � fa; bg � f1; 2g;the elements of which we write as, e.g., ta2 rather than as (t; a; 2). The stickersystem
 = (�; id;Du;D`; A) is constructed as follows:Du = fta2 ta1 ; ta2 tb1 ; tb2gD` = fta1 ta2 ; ta1 tb2 ; tb1gA = f(sb1 ; sb1 ta2) ; (sb1 ; sb1 tb2)gand the coding h : � ! fa; bg is de�ned by h(qci) = c for each q 2 fs; t; fg,c 2 fa; bg and i 2 f1; 2g.Note that the stickers of
 are either encodings of two consecutive transitionsof A, or encodings of transitions of A that end in a �nal state (the latter areneeded to stop the computation of
). Furthermore, note that because of theuse of symbols 1 and 2 the computations of
 are intrinsically primitive. Thesetwo observations together guarantee that only encodings of paths through theautomaton are generated.Four sample computations of
 are[sb1ihtb2i[sb1 tb2i [sb1ihta2 tb1i[sb1 ta2ihtb1i [sb1ihta2 ta1ihtb2i[sb1 ta2i hta1 tb2i [sb1ihta2 ta1ihta2 tb1i[sb1 ta2i hta1ta2ihtb1iClearly h(L(
)) = h(Lp(
)) = L(A).Note that each computation of
 that uses the lower sticker tb1 to �nish isfair, and that all other computations (that use the upper sticker tb2 to �nish)have one more upper sticker than lower stickers. To guarantee that for eachcomputation of A there is a fair computation in the sticker system, we onlyhave to add the axioms (sb1 tb2; sb1 tb2) and (sb1 ta2 ta1; sb1 ta2) to A. For thenew sticker system
0 we then have h(Lf (
0)) = h(Lpf (
0)) = L(A). 2The �rst �ve observations above and the fact that REG is closed under codingsyield the following propositions.Proposition 7.1 SL � REG = COD(SL)Proposition 7.2 SLp � REG = COD(SLp)Seventh, contrary to primitivity, which is a local property of computations,fairness is more of a global property, that allows one to count. Consequently itis not surprising that SLf � REG 6= ?; an example of a non-regular fair stickerlanguage is Lf (
) = fx 2 faa; bbg� j #a(x) = #b(x)g from Example 7.2.Finally, the smallest upper bound for SLf that has been established un-til now is MAT�, the family of context-free matrix languages with arbitraryrules ([PRS98, Theorem 4.14]), which is a rather large family containing non-semilinear languages, and which is known to be a strict subset of RE ([RS97]).

84 STICKER SYSTEMS7.4 Research topicsIn [KP+98] it is demonstrated that the family of fair sticker languages containsnon-regular languages, while the family of languages generated by context-freematrix grammars with arbitrary rules is given as an upper bound. In connectionwith this rather large upper bound the following problem is formulated: \is thefamily [of fair sticker languages] included in the family of context-free languages(or even in the family of linear languages)?".In Chapter 8 we answer this question by giving a fair sticker language thatis non-linear, while demonstrating that the fair sticker languages are strictlyincluded in another subfamily of the context-free languages, the blind one-counter languages (Theorem 8.1 and Lemma 8.2).The main result of that chapter is that the connection between these twofamilies is quite strong: blind one-counter languages can be characterized ascodings of fair sticker languages (Theorem 8.5), giving the `fair version' ofProposition 7.1.From Propositions 7.1 and 7.2 we can derive that SL � REG � COD(SLp),or in words: each sticker language is a coding of a primitive sticker language.In Section 9.1 we elaborate on this `primitive normal form' for sticker systems:we give a direct construction (i.e., not via �nite automata) and we extend thisconstruction to fair sticker languages (i.e., we give a direct proof that each fairsticker language is a coding of a primitive fair sticker language). In both ourconstructions, every computation in the resulting sticker system is primitive.Furthermore, research described in the literature is mostly about comparingdi�erent kinds of sticker systems (e.g., unrestricted, bidirectional, simple, one-sided, regular; they di�er in the kind of axioms and stickers that are allowed)to each other and to the language families from the Chomsky hierarchy. Untilnow, there has been no attempt to relate the di�erent kinds of sticker languages(fair, primitive, etcetera; they are the result of restrictions on the computationsof the sticker system) that can be generated by one kind of sticker system.In Sections 9.2 through 9.4 we describe the results of our research in thatdirection for the unrestricted, fair, primitive and primitive fair sticker languagesgenerated by the type of sticker system that we consider: the simple regularsticker systems.

Chapter 8Fair sticker languagesWe prove that each fair sticker language is accepted by a blind one-counterautomaton. Moreover, we show that each blind one-counter language is acoding of a fair sticker language.8.1 Fair sticker languages are bca-languagesWe answer the question left open in [KP+98, p. 419]: is the family of fairsticker languages included in the family of context-free languages (or even inthe family of linear languages)? To start, observe that the language Lf (
) =fx 2 faa; bbg� j #a(x) = #b(x)g from Example 7.2 is context-free, but notlinear. The non-linearity of Lf (
) can be proved using the pumping lemma forlinear languages [HU79, Exercise 6.11], which says that ifK is linear, then thereis a constant n such that every z 2 K with jzj > n can be written as z = uvwxywith juvxyj � n, jvxj � 1 and uviwxiy 2 K for all i � 0. In the case of Lf (
),it is clear that there are no such u; v; w; x; y for z = a2nb4na2n 2 Lf (
).We will now give a �rst answer to the question posed in [KP+98], by prov-ing that every fair sticker language is a bca-language (see Section 2.4), hencecontext-free.Theorem 8.1 SLf � 1BCAProof. Let
 = (�; �;Du;D`; A). Because of Theorem 7.3 we may assume that� = id. For each (x0; y0) 2 A, construct two bca's: Bx0 and By0 , as follows.We describe the construction of Bx0 = (Q;�; Æ; q0; ffg) in detail, By0 can bemade in an analogous way.If x0 = �, then q0 = f . If x0 6= �, then Bx0 has a path labelled by x0 fromits initial to its �nal state. In both cases the counter is not changed, since theaxioms do not have to be counted. Moreover, for each w 2 Du, let Bx0 havea (new) path labelled with w from its �nal to its �nal state and add 1 to the85

86 FAIR STICKER LANGUAGEScounter at one moment somewhere along this path. Note that L(Bx0) = fx0g,which does not seem very useful yet.Now we construct from each pair of bca's Bx0 and By0 , for (x0; y0) 2 A,a bca Bx0;y0 for which L(Bx0;y0) = Lf (
x0;y0), where
x0;y0 is de�ned as(�; id;Du;D`; f(x0; y0)g), using a slightly adapted version of the product con-struction for the intersection of two regular languages: for each pair of in-structions (p; a; "; q) in Bx0 and (r; a; "0; s) in By0 , the bca Bx0;y0 contains theinstruction (hp; ri; a; " � "0; hq; si).Finally, it is clear that Lf (
) = S(x0;y0)2A L(Bx0;y0) is in 1BCA, since 1BCAis closed under union and A is �nite. 2Omitting the counter from the previous proof, one constructs a �nite stateautomaton for L(
) = S(x0;y0)2A(x0 �D�u \ y0 �D�̀). This elementary observationshows that SL � REG.The inclusion SLf � 1BCA is strict because ba�b is not a fair sticker lan-guage, whereas ba�b 2 REG � 1BCA.Lemma 8.2 ba�b =2 SLfProof. We reconsider the proof of ba+b 62 SL, cf. [PR98, Theorem 10] andpage 82 of this thesis. Assume that ba�b is the fair language of a sticker system
 = (fa; bg; �;Du;D`; A). According to Theorem 7.3 we may assume that� = id. Let Du \ a+ = fx1; : : : ; xmg and D` \ a+ = fy1; : : : ; yng be the sets ofstickers consisting of a's only. Every string baib that is longer than the axiomscan be decomposed as �uxj11 : : : xjmm �u = �`yk11 : : : yknn �`, with �u the upperpart of an axiom (or a string from Du starting with b), and �u 2 Du endingin b, and similarly for �`; �`. The vector �i = (j1; : : : ; jm; k1; : : : ; kn) assignsto baib the number of each sticker containing only a's occurring in a possibledecomposition of the upper and the lower strand.Because we have only a �nite number of choices, an in�nite number ofbaib have the same strings �u; �`; �u; �` in their decompositions. According toDickson's lemma [Dic13, Lemma B] we can �nd baib and bai0b (i0 > i) in thisin�nite sequence such that �i0 � �i (componentwise). Now the vector �i0 � �ide�nes a `fair decomposition' of ai0�i, which shows that baibai0�i 2 Lf (
),contradicting Lf (
) = ba�b. 2In the next section we make our answer more precise, in the sense that weshow that 1BCA is a rather close upper bound for SLf : every bca-language isa coding of a fair sticker language.8.2 bca-languages are codings of fair sticker languagesIn the case of arbitrary, i.e., not necessarily fair, sticker languages the simulationof sticker systems by �nite automata can be reversed provided that one can use

FAIR STICKER LANGUAGES 87a coding (Proposition 7.1). In this section we demonstrate that Proposition 7.1can be extended to fair sticker languages and bca-languages: every language in1BCA is the coding of a fair sticker language (Theorem 8.5). First we illustratethis in Example 8.1. Then we show that, for a particular kind of bca calledsticky, this example can be generalised (Lemma 8.3). Finally, we explain howthese sticky bca's can be used to construct a coding of a fair sticker languagefor every bca-language.Example 8.1 Consider the bca A given below.) b0 ja ; 0c0 *a ; 0 a1 *b ;�1 jc ; 0 b2 ja ; 0c2 *a ; 0 a3? b ; 0
6 c ; +1The automaton accepts the language f w 2 fab; acg� j #b(w) = #c(w) g. Thiscan be veri�ed by considering the four-letter segments abab, abac, acab, andacac. While the automaton makes a cycle on these segments (starting andending in fb0; c0g), it changes its counter by �1, 0, 0, and +1, respectively.Note that there is a much easier bca that accepts the same language; however,the special structure of the automaton above is essential for this example.First, we forget about the counter, and we have a look at the �nite-statebehaviour of A, fabab; abac; acab; acacg� . A computation of A can be sim-ulated by a (fair) computation of a sticker system with overlapping stickers,cf. [KP+98, Lemma 5], illustrated as follows, with brackets to delimit the stick-ers and the axiom:[iha1 b2 a3 b0iha1 b2 a3 c0iha1 c2 a3 b0iha1 c2 a3 c0i[a1 b2iha3 b0 a1 b2iha3 c0 a1 c2iha3 b0 a1 c2iha3c0iSecond, we can include the contents of the counter by representing it as thedi�erence between the number of upper and lower stickers in the computationof the sticker system. For each increment instruction we detach the last com-ponent of an upper sticker, and similarly for decrement instructions and lowerstickers. +1 +1[iha1 b2 a3 b0iha1 b2 a3ihc0iha1 c2 a3 b0iha1 c2 a3ihc0i[a1ihb2iha3 b0 a1ihb2iha3 c0 a1 c2iha3 b0 a1 c2iha3 c0i-1 -1

88 FAIR STICKER LANGUAGESLet
 = (Q; id;Du;D`; A) be the sticker system speci�ed byA = f (�; �) ; (�; a1) ; (�; a1c2) gDu = fa1b2a3 ; a1b2a3b0 ; a1c2a3 ; a1c2a3b0 ; c0gD` = fa3b0a1 ; a3b0a1c2 ; a3c0a1 ; a3c0a1c2 ; a3b0 ; a3c0 ; b2g:Then L(A) is obtained by applying to Lf (
) the coding h : Q! fa; b; cg thatmaps a1; a3 to a, b0; b2 to b, and c0; c2 to c. 2Note that, in our construction, paths through the automaton are simulated inthe sticker system by building them from segments of four consecutive states,instead of two consecutive states, as is the case in [KP+98, Lemma 5]. Thereason for this is that we sometimes want to disconnect the last state fromsuch a segment. If we use segments of length shorter than four, then it becomespossible to generate sequences of states that do no form a path in the automaton(see also the proof of Lemma 8.3).A crucial property of the bca from the above example is formalized in thefollowing notion.De�nition 8.1 Let A = (Q;�; Æ; q0; F) be a bca. It is sticky if there is apartition of its state set Q = S3i=0Qi such that Æ is a subset of(Q0 � �� f0g �Q1) [(Q1 � �� f�1; 0g �Q2) [(Q2 � �� f0g �Q3) [(Q3 � �� f0;+1g �Q0)and such that q0 2 Q0 and F � Q0. 2The bca A from Example 8.1 is sticky, since obviously the partition Q0 =fb0; c0g, Q1 = fa1g, Q2 = fb2; c2g and Q3 = fa3g satis�es the requirements.A sticky bca changes its counter in a very restrictive way: in each segmentof four instructions the automaton may increment and decrement its counteronly once, and only at speci�c positions. Note that the language accepted bya sticky bca always consists of strings with lengths that are multiples of four.We generalise the construction from Example 8.1 to sticky bca's.Lemma 8.3 Let A be a sticky bca. Then there exist a sticker system
 anda coding h such that L(A) = h(Lf (
)).Proof. Let A = (Q;�; Æ; q0; F) be a sticky bca. We write the state set as adisjoint union Q = S3i=0Qi as in De�nition 8.1.Let h : Q ! � be a coding such that each instruction is of the form(p; h(q); "; q), i.e., all instructions ending in a given state read the same letter.This can easily be achieved by splitting states into several copies { one for each

FAIR STICKER LANGUAGES 89letter from the alphabet, each of which has the same outgoing instructions {and re-routing the instructions into the appropriate copy. In the same vein weassume that there exists a partition Q2 = Q02 [Q�2 , such that each instruction(p; a; "; q) entering Q02 (Q�2) has " = 0 (" = �1, respectively). Similarly weassume Q0 = Q00 [Q+0 .Construction. A sticker system
 = (Q; id;Du;D`; A) with h(Lf (
)) = L(A)is constructed as follows. To avoid confusion between states and stickers, wekeep the intuitive bracket notation for the stickers.upper stickers. For every pair of consecutive instructions (p1; a2; "2; p2) and(p2; a3; 0; p3) with p1 2 Q1, Du contains the stickers hp1p2p3i and, forevery p0 2 Q00, hp1p2p3p0i. For each p+ 2 Q+0 , Du contains the stickerhp+i.lower stickers. For every pair of consecutive instructions (p3; a0; "0; p0) and(p0; a1; 0; p1) with p3 2 Q3, D` contains the stickers hp3p0p1i and, forevery p2 2 Q02, hp3p0p1p2i. For each p� 2 Q�2 , D` contains the stickerhp�i. For every instruction (p3; a0; "0; p0) with p3 2 Q3, p0 2 F , D`contains the sticker hp3p0i.axioms. For every instruction (q0; a1; 0; p1) with p1 2 Q1, A contains the pairs(�; p1) and, for every p2 2 Q02, (�; p1p2). If q0 2 F , i.e., � 2 L(A), then(�; �) is added to A.Correctness. Observe that � 2 L(A) if and only if � 2 Lf (
) if and only if� 2 h(Lf (
)).Now, let � = p1p2p3 : : : pn 2 Q+ be an element of Lf (
), for some n � 1.First, we reconstruct a computation of A by following the computation of �in
. Since there is no computation longer than (�; �) starting with (�; �) 2 A{ all stickers in Du start with symbols from Q1 [Q+0 , whereas all stickers fromD` start with symbols from Q3[Q�2 { we know that the computation of � in
started either with (�; p1) 2 A or with (�; p1p2) 2 A, where p1 2 Q1. Accordingto the construction of A, Æ contains an instruction (q0; a1; 0; p1).We continue by observing that each upper sticker of length 3 or 4 starts atposition 4i+1, and that each lower sticker of length 2, 3 or 4 starts at position4i+ 3, for some i � 0. It is easy to see that this follows from the only possiblecomputation of �, here illustrated for n = 8:[ih p1 ! p2 ! p3 � � � p4 ih p5 ! p6 ! p7 � � � p8i[p1 � � � p2 ih p3 ! p4 ! p5 � � � p6 ih p7 ! p8iHere the arrows indicate parts of a sticker that represent instructions from Æ,while the dotted lines do not necessarily correspond to an instruction fromÆ and, at the same time, indicate that the next symbol may be detachedto form a sticker of length 1. Moreover, observing Du we �nd instructions

90 FAIR STICKER LANGUAGES(p4i+1; a4i+2; "4i+2; p4i+2) and (p4i+2; a4i+3; 0; p4i+3), while D` gives rise to in-structions (p4i+3; a4i+4; "4i+4; p4i+4) and (p4i+4; a4i+5; 0; p4i+5).Since pn is the last symbol of stickers from both Du and D`, we know thatpn 2 F � Q0, and there exists an instruction (pn�1; an; "n; pn) in Æ. Note thatn is a multiple of four, and we write n = 4k.Second, we address the matter of fairness. To compute the contents of thecounter we study the even positions of �. Observe that "4i+4 = +1 if and onlyif p4i+4 2 Q+0 , which implies that the sticker hp4i+4i is used in the upper partof the solution. Otherwise, if "4i+4 = 0, then p4i+4 is the fourth element ofthe sticker hp4i+1p4i+2p4i+3p4i+4i. Thus, the number of upper stickers equalsk+Pk�1i=0 "4i+4. Similarly, the number of lower stickers equals k�Pk�1i=0 "4i+2.Consequently, fairness of the sticker solution is equivalent to counter value zeroand acceptance by the bca.The above shows that h(Lf (
)) � L(A). For the converse inclusion L(A) �h(Lf (
)) a similar reasoning can be given. 2Sticky bca's form a normal form for bca's accepting languages consisting ofstrings with lengths that are multiples of four. The idea behind this is thefollowing.Let A be a bca, and suppose that we want to construct a sticky bca Bsuch that L(A) = L(B). In every four steps, A changes the contents of itscounter by at most �4. The new bca B however, may change its counter byat most �1 in the corresponding four steps. To make up for this, we changethe interpretation of the counter value of B: each unit on the counter of Brepresents 4 units on the counter of A, an idea known at least since [FMR68].Now, B simulates the computation of A. Each change made to the counterof A is recorded in the �nite-state memory of B. Only when allowed (at thespeci�c points in the four step cycle), B moves any excess of �4 units of A'scounter as one unit to (or from) its own counter.Lemma 8.4 For each bca that accepts only strings of lengths that are multi-ples of four, there exists an equivalent sticky bca.Proof. Let A = (Q;�; Æ; q0; F) be a bca as mentioned in the lemma. Weconstruct a sticky bca B such that L(A) = L(B).Let I = f0; 1; 2; 3g. The state set Q0 of B equalsQ� I � f�4;�3;�2;�1; 0; 1; 2; 3g;the elements of which we denote as p:i:m, rather than as (p; i;m). Here p 2 Qrepresents the state of A, i 2 I keeps track of the four step cycle, and �4 �m � 3 is the remainder value of A's counter not yet stored in the counter of B.Hence, if c is the value of A's counter and c0 the value of B's counter, then theequality c = 4c0 +m should hold for each pair of corresponding instantaneous

FAIR STICKER LANGUAGES 91descriptions of A and B. The initial state of B equals q0:0:0, its �nal state setequals F � f0g � f0g.Let (p; a; "; q) be an instruction of A. Then B has the instructions(p:0:m; a; 0; q:1:m+")(p:1:m; a; �1; q:2:m+"+4) if m+ " < �1(p:1:m; a; 0; q:2:m+") if m+ " � �1(p:2:m; a; 0; q:3:m+")(p:3:m; a; +1; q:0:m+"�4) if m+ " � 1(p:3:m; a; 0; q:0:m+") if m+ " < 1We chose to check the relation between m+" and �1 rather than between m+"and �4, although the latter seems more logical. The reason for this is that weneed to prevent the occurrence of the situation where i = 0 and c = 4c0+m = 0while c0 6= 0 and m 6= 0 (which can occur only when m is a multiple of 4), i.e.,B does not accept while it should. Because of this choice, indeed the reachablecon�gurations of B satisfy the following restrictions, for p:i:m 2 Q0:if i = 0 thenm 2 f�3;�2;�1; 0g1 f�4;�3;�2;�1; 0; 1g2 f�1; 0; 1; 2g3 f�2;�1; 0; 1; 2; 3gIt is easy to see that B is sticky, as it adheres to the four step cycle fromDe�nition 8.1.Moreover, our construction introduces for each instruction (p; a; "; q) of Aexactly one instruction (p:i:m; a; "0; q:i0:m0) for each pair i;m. This makes itstraightforward to show that a computation (q0; xy; 0) `j (q; y; c) of A cor-responds with a computation (q0:0:0; xy; 0) `j (q:i:m; y; c0) of B satisfyingc = 4c0 +m, and i = j mod 4.To show that L(B) � L(A), observe that if B reaches a �nal state q:0:0 withcounter value zero, then A (using the corresponding computation) reaches �nalstate q, also with counter value zero.Conversely, assume that A reaches a �nal state q 2 F with counter valuezero. Now the corresponding computation of B reaches some state q:i:m andcounter value c0 satisfying the invariant m+ 4c0 = 0. By the length restrictionof strings accepted by A we know that i = 0. Hence, taking into account thereachable states of B, we have m 2 f�3; : : : ; 0g. Thus m+4c0 = 0 implies thatm = 0 and thus c0 = 0, corresponding to acceptance with counter value zero in�nal state q:0:0.A more formal inductive proof that L(A) = L(B) is left to the reader. 2

92 FAIR STICKER LANGUAGESFinally we arrive at the main result of this chapter, the equivalence of blindone-counter languages and codings of fair sticker languages. Note the similaritywith the situation for (arbitrary) sticker languages (Proposition 7.1).Theorem 8.5 SLf � 1BCA = COD(SLf).Proof. By Theorem 8.1, SLf � 1BCA. The inclusion is strict by Lemma 8.2.As 1BCA is closed under codings, the inclusion COD(SLf) � 1BCA follows. Weproceed by proving the converse inclusion.Let L 2 1BCA. For every string w, we de�ne Lw = f x j wx 2 L; jxj =0 mod 4 g. By the closure properties we have established for 1BCA in Sec-tion 2.4, Lw is also in 1BCA, and, by Lemma 8.4, it is accepted by a stickybca. Consequently, it is the coding of a fair sticker language (Lemma 8.3).Note that L = Sjwj�3w �Lw. A sticker system for the language w �Lw isobtained from the one for Lw by replacing each axiom (x; y) by (wx;wy) andextending the used coding with the identity on the alphabet of L. Assuming thesticker systems representing the w �Lw have disjoint alphabets (by renaming),we build a sticker system for L by taking their (�nite) union. 2Our characterization shows that COD(SLf) is a more `robust' family than SLfitself, comparable to the situation for COD(SL) and SL. In particular, we canconclude that COD(SLf) enjoys the many closure properties of a principal ra-tional cone (arbitrary morphisms, inverse morphisms, intersection with regularlanguages, and union). Some of these properties seem to require rather involvedproofs, should we want to show them by direct construction.8.3 SummaryWe have answered a question concerning the position of SLf in the Chomskyhierarchy: is SLf � CF or even SLf � LIN? We showed that SLf 6� LIN, and weproved that SLf � 1BCA, which is a subfamily of CF. Moreover, we showed that1BCA is a rather close upper bound for SLf by proving that 1BCA = COD(SLf).

Chapter 9A hierarchy of sticker familiesWe give direct constructions to create for each (fair) sticker system an equiv-alent { modulo a coding { (fair) sticker system that can do only primitivecomputations. We also investigate the relations between the families of unre-stricted, primitive, fair and primitive fair sticker languages.9.1 A primitive `normal form'In [PRS98, Chapter 4] the following proposition can be derived from Theo-rem 4.1, Lemma 4.1 and Corollary 4.7 to Theorem 4.8 (see also Section 7.3 ofthis thesis):Proposition 9.1 SL � REG = COD(SLp)This implies that for every sticker system
 a sticker system
0 and a codingh can be constructed such that L(
) = h(Lp(
0)), or in words: every languagethat is generated by a sticker system can also be generated using only primitivecomputations, provided that one is allowed to use a coding. A closer look atthe proof of [PRS98, Theorem 4.8] reveals that
0 can be constructed such thateach of its computations is primitive. However, this construction is not direct:�rst an equivalent regular grammar is created for the original sticker system(using the construction given in the proof of [PRS98, Theorem 4.1]), and then,using a coding, this regular grammar is translated into a sticker system thatallows only primitive computations (see the proof of [PRS98, Theorem 4.8]).We show that there is also an elegant direct construction (Lemma 9.1),based on the observation that if there is no pair consisting of an upper and alower sticker such that their �rst letters are complementary, then every com-putation is intrinsically primitive, since it cannot continue after a blunt end.(The same observation is used in the proof of Lemma 8.3 and in Example 7.4,but for di�erent reasons.) To cover also the non-primitive computations of the93

94 A HIERARCHY OF STICKER FAMILIESoriginal system, we add new stickers that are concatenations of two old stick-ers. These new stickers can now be used at the positions where in the originalcomputation an intermediate blunt end occurred.As an aside, note that if all computations of a sticker system
 are primitive,then Lp(
) = L(
), but not the other way around: some words in L(
) mayhave both a primitive and a non-primitive computation.Lemma 9.1 For every sticker system
 a sticker system
0 and a coding h canbe constructed such that all computations of
0 are primitive and h(L(
0)) =L(
).Proof. Let
 = (�; �;Du;D`; A) be a sticker system. We may assume that �equals the identity on �.Construction. De�ne
0 = (�0; �0;D0u;D 0̀ ; A0) as follows:�0 = � [fa j a 2 �g�0 = � [f(a; a); (a; a) j a 2 �gD0u = fa1 a2 : : : ak j a1a2 : : : ak 2 Du for a1; : : : ; ak 2 �g [fa1 a2 : : : akx j a1a2 : : : ak ; x 2 Du for a1; : : : ; ak 2 �gD 0̀ = fa1 a2 : : : ak j a1a2 : : : ak 2 D` for a1; : : : ; ak 2 �g [fa1 a2 : : : aky j a1a2 : : : ak ; y 2 D` for a1; : : : ; ak 2 �gA0 = A [f(x0x; y0) j (x0; y0) 2 A and x 2 DugThe coding h is de�ned by h(a) = h(a) = a for all a 2 �.We call each element of D0u (D 0̀) that is a concatenation { modulo thecoding h { of two elements from Du (D`) an upper (lower) double-sticker.Correctness. First, it is easy to see that all computations in
0 are primitive:since we have marked the �rst letter of each sticker and have de�ned �0 in sucha way that two marked letters are never complementary, it is clear that nocomplete computation can be prolonged.Second, we prove that L(
) � h(L(
0)). Let x 2 L(
), i.e., x = x0x1 : : : xm =y0y1 : : : yn, with (x0; y0) 2 A, x1; : : : ; xm 2 Du for somem � 0, and y1; : : : ; yn 2D` for some n � 0.We start by observing that each element of Du, D` or A is { modulothe coding h { also in D0u, D 0̀ or A0, respectively. Hence if the computation(x0x1 : : : xm; y0y1 : : : yn) of
 is primitive, then there is a primitive computation(x0x01 : : : x0m; y0y01 : : : y0n) of
0, with h(x0i) = xi for 1 � i � m and h(y0j) = yjfor 1 � j � n.Now assume that (x0x1 : : : xm; y0y1 : : : yn) is not primitive. Let i1; : : : ; ikand j1; : : : ; jk, with k � 2, 0 � i1 < : : : < ik�1 < ik = m and 0 � j1 <: : : < jk�1 < jk = n, be all indices such that (x0 : : : xip ; y0 : : : yjp) is a completecomputation of
, for p such that 1 � p � k. De�ne u1 = x0 : : : xi1 , v1 =y0 : : : yj1 , up = xip�1+1 : : : xip and vp = yjp�1+1 : : : yjp for each 2 � p � k.

A HIERARCHY OF STICKER FAMILIES 95x0 : : : xi1y0 : : : yj1u1z }| {| {z }v1 xi1+1 : : : xi2yj1+1 : : : yj2u2z }| {| {z }v2 : : :: : : xip�1+1 : : : xipyjp�1+1 : : : yjpupz }| {| {z }vp : : :: : : xik�1+1 : : : xmyjk�1+1 : : : ynukz }| {| {z }vkHence there are exactly k � 1 intermediate blunt ends in the computation(x0x1 : : : xm; y0y1 : : : yn), and they are located on the borders between (u1 : : : up;v1 : : : vp) and (up+1 : : : uk; vp+1 : : : vk), for each 1 � p � k � 1.For every odd p, with 1 � p � k� 1, up ends with xip and up+1 starts withxip+1. According to the de�nition of D0u, there is a double-sticker x0ip � xip+1 inD0u with h(x0ip) = xip . (If p = 1 and i1 = 0, then there is an axiom (x0x1; y0)in A0.)Analogously, for every even p, with 2 � p � k � 1, vp ends with yjp, vp+1starts with yjp+1 andD 0̀ contains the double-sticker y0jp �yjp+1 with h(y0jp) = yjp .Note that in this way at every `odd' intermediate blunt end an upper double-sticker is used, while at every `even' intermediate blunt end a lower double-sticker is used. This alternation of upper and lower double-stickers solves anyproblems that may arise when three consecutive intermediate blunt ends areseparated only by one upper and lower sticker between the �rst and secondblunt end, and one upper and lower sticker between the second and third. Inother words, this alternation guarantees that we do not need concatenations ofmore than two `old' stickers (modulo the coding).Consequently x 2 h(L(
0)) and L(
) � h(L(
0)).Finally, it is obvious that every upper sticker of
0 has a one-to-one corre-spondence (via the coding h) with either an upper sticker of
 or the concatena-tion of two upper stickers of
, and similarly for the lower stickers. Furthermore,every axiom of
0 is either an axiom from
 or an axiom from
 in which the�rst component has an upper sticker from
 concatenated to it. Therefore it isstraightforward that h(L(
0)) � L(
). 2In the sequel of this section we demonstrate that Lemma 9.1 can be extended tofair sticker languages. As before, the result is already known, but only throughan indirect construction that can be derived from results in the previous chap-ter: combining the constructions in the proofs of Theorem 8.5 and Lemma 8.3we get the following result.Lemma 9.2 SLf � 1BCA � COD(SLpf)We give here a direct construction, in which we use essentially the same tech-nique as in the proof of Lemma 9.1 above, i.e., we mark the beginning of eachsticker and we use double-stickers to `bridge' (or `ligate') intermediate bluntends.

96 A HIERARCHY OF STICKER FAMILIESNote that every time an upper (lower) double-sticker is used instead of twonormal upper (lower) stickers, the total number of upper (lower) stickers usedin the computation decreases by 1. Since we now want (un)fair computations toremain (un)fair, we have to guarantee that exactly as many double-stickers areused in the upper strand as in the lower strand. This can be done by ensuringthat double-stickers are applied alternately in the upper strand and in the lowerstrand at the positions where in the original system an intermediate blunt endoccurred. In the previous proof we already used the fact that the application ofdouble-stickers can happen alternately, and it is easy to extend the method usedthere to guarantee this alternating application: add a symbol to each letter inthe alphabet, indicating in which strand the next double-sticker should occur(say that `" ' means upper strand and `# ' means lower strand) and use theseextended letters in the stickers and axioms in both strands, requiring that ateach position either both strands have" or both strands have#. Change from"to # if an upper double-sticker is used, and from # to " if a lower double-stickeris used. Start, e.g., with ".If the original computation had an even number of intermediate blunt ends,then the above approach gives a new computation in which the di�erence be-tween the number of upper and the number of lower stickers is the same asin the original computation. However, if the original computation had an oddnumber of intermediate blunt ends, then the lower strand of the new compu-tation will have one extra sticker less than the other strand. To prevent thisfrom happening, we require that for such an `odd' original computation the�rst intermediate blunt end should be bridged in both the upper and the lowerstrand. We indicate this with the symbol `l ' in both strands.We use the extra symbol `�' to ensure that the translation that is meantfor `even' original computations is not used for `odd' original computations andvice versa (actually, � ensures that computations do not end with # or l), and`#' to guarantee that the l symbols have the desired e�ect (for details see theproof below).Lemma 9.3 For every sticker system
 a sticker system
0 and a coding h canbe constructed such that all computations of
0 are primitive and h(Lf (
0)) =Lf (
).Proof. Let
 = (�; �;Du;D`; A). We may assume that � is the identity on �.Construction. De�ne
0 = (�0; �0;D0u;D 0̀ ; A0) as follows, where the ai; bi; ci anddi are symbols in �:�0 = fa"; a#; a"; a#; a#�; a#�; al; al; al#; al# j a 2 � g�0 = f(a"; a") ; (a"; a") ; (a"; a") ; (a#; a#) ; (a#; a#) ; (a#; a#);(a#; a#�) ; (a#�; a#) ; (a#; a#�) ; (a#�; a#) ; (a#; a#�) ; (a#�; a#);(al; al) ; (al#; al#) j a 2 � g

A HIERARCHY OF STICKER FAMILIES 97D0u = f a1 " a2 " : : : ak " ;a1 # a2 # : : : ak #� ;a1 l a2 l : : : ak l� ;a1 " a2 " : : : ak " b1 # : : : bn #� ;a1 l a2 l : : : ak l#b1 " : : : bn " ;a1 l a2 l : : : ak l#b1 " : : : bn " c1 # : : : cm #� ja1a2 : : : ak ; b1 : : : bn ; c1 : : : cm 2 Du gD 0̀ = f a1 " a2 " : : : ak " ;a1 # a2 # : : : ak #� ;a1 l a2 l : : : ak l� ;a1 # a2 # : : : ak # b1 " : : : bn " ;a1 l a2 l : : : ak l#b1 " : : : bn " j a1a2 : : : ak ; b1 : : : bn 2 D` gA0 = f (a1 " : : : ak " ; b1 " : : : bn ") j (a1 : : : ak ; b1 : : : bn) 2 A g [f (a1 " : : : ak " c1 # : : : cm #� ; b1 " : : : bn ") j k � n;(a1 : : : ak ; b1 : : : bn) 2 A and c1 : : : cm 2 Dug [f (a1 l : : : ak l ; b1 l : : : bn l�);(a1 l : : : ak l ; b1 l : : : bn l#c1 " : : : cm ") j k < n;(a1 : : : ak ; b1 : : : bn) 2 A and c1 : : : cm 2 D`g [f (a1 l : : : ak l� ; b1 l : : : bn l);(a1 l : : : ak l#c1 " : : : cm " ; b1 l : : : bn l) j k > n;(a1 : : : ak ; b1 : : : bn) 2 A and c1 : : : cm 2 Dug [f (a1 l : : : ak l#c1 " : : : cm " d1 # : : : dl #� ; b1 l : : : bk l) j k > n;(a1 : : : ak ; b1 : : : bn) 2 A and c1 : : : cm ; d1 : : : dl 2 Dug [f (a1 l : : : ak l#c1 " : : : cm " ; b1 l : : : bk l#d1 " : : : dn ") j k = n;(a1 : : : ak ; b1 : : : bk) 2 A ; c1 : : : cm 2 Du and d1 : : : dn 2 D`gThe coding h is de�ned by h(a ") = h(a #) = h(a ") = h(a #) = h(a #�) =h(a#�) = h(al) = h(al) = h(al#) = h(al#) = a for each a 2 �.Note that � is de�ned such that the arrows " ; # ; l and l# must match thedecoration of the corresponding letter in the other strand, whereas bars (a) andstars (�) must not match.Correctness. First, as in the proof of Lemma 9.1, it is clear that all computa-tions of
0 are primitive.Second, we show that Lf (
) � h(Lf (
0)). Every computation of
 can alsobe written as (u1 : : : uk; v1 : : : vk), with the same properties as in the proof ofLemma 9.1. Following the same reasoning as in that proof, and in view of thede�nition of
0 and the explanations directly before this lemma, it is clear thatfor each computation of
 an equivalent (modulo h) primitive computation of

98 A HIERARCHY OF STICKER FAMILIES
0 can be given. The correspondence between such a pair of computations in
and
0 is represented schematically for three sample computations in Figures 9.1and 9.2, where Figure 9.1(a) corresponds to Figure 9.2(a) and so on.(a) u1 u2 u3 u4 u5v1 v2 v3 v4 v5 (b) u1 u2 u3v1 v2 v3(c) u1 u2 u3 u4v1 v2 v3 v4Figure 9.1: Three computations in
Here a vertical dashed line indicates an intermediate blunt end (a real onein Figure 9.1 and a `prevented' one in Figure 9.2), the two boxes in everycomputation represent the two parts of an axiom, and each solid horizontalline is a sticker. The black dots in Figure 9.2 indicate the positions wheretwo `normal' stickers are concatenated to form a double-sticker, and an arrowplaced on a line or a box means that every letter in that sticker or axiom (untilthe next black dot) has that arrow with it. We did not draw the � and #symbols.(a) " " # " # # " "w1 w2 w3 w4 w5" " " # " # " "z1 z2 z3 z4 z5 (b) " # " " "w1 w2 w3" # # " "z1 z2 z3(c) l " # # " "w1 w2 w3 w4l l l " # "z1 z2 z3 z4Figure 9.2: Three computations in
0It should be clear that the di�erence between the number of upper stickers andthe number of lower stickers used in the computation of
 is the same as in thecorresponding computation of
0. As explained, this is due to the alternationof " and # in the `segments', forcing the concatenation of stickers to occur anequal number of times in the upper and lower strand; the mark � prohibits anunmatched concatenation in the upper strand.Third, for the same reason as in the proof of Lemma 9.1, it is clear thath(L(
0)) � L(
).

A HIERARCHY OF STICKER FAMILIES 99Finally, we show that for each fair computation (x; y) of
0 there is afair computation (h(x); h(y)) of
. De�ne �" = fa " ; a " j a 2 �g, �# =fa# ; a# ; a#� ; a #� j a 2 �g and �l = fa l ; a l ; a l# ; a l# j a 2 �g. Acareful look at the de�nition of
0 reveals that each computation of
0 can alsobe written as (w1 : : : wn; z1 : : : zn), for a certain n � 1, where either wi; zi 2 �+"for i odd and wi; zi 2 �+# for i even, or w1; z1 2 �+l , wi; zi 2 �+" for i even andwi; zi 2 �+# for i odd. Since every sticker that ends with a symbol from �# ismarked with a � in this last symbol, and since �0 de�nes that two symbols thatare both marked with � are not complementary, it follows that w1; z1 2 �+" ifand only if n is odd, and w1; z1 2 �+l if and only if n is even.For i odd, the only way to cross the border between (wi; zi) 2 �+" � �+"and (wi+1; zi+1) 2 �+# � �+# is to use a double-sticker in the upper strand.Similarly, for i even, the only way to change from (wi; zi) 2 �+# � �+# to(wi+1; zi+1) 2 �+" � �+" is to use a double-sticker in the lower strand. Notethat there are no lower double-stickers in �+" ��+# and no upper double-stickersin �+# � �+" . Moreover, double-stickers can only be used on such a border,because every double-sticker contains at least two di�erent kinds of arrow,whereas every `blunt segment' (wi; zi) contains only one kind of arrow.Furthermore, no computation can consist of only symbols from �l, and theonly way to �nish a computation that starts with an axiom beginning withsymbols from �l is to use in one of the two strands something that containsa # (i.e., a double-sticker or an axiom with a sticker attached to at least oneof the two components). From the de�nition of �0 it follows that symbolscontaining # are complementary only to themselves, which guarantees that atthat position a double-sticker or an axiom concatenated with a sticker is usedin both strands.In short, the symbols ", #, � and # together guarantee that in each compu-tation of
0 the number of concatenations (the black dots in Figure 9.2) usedin the upper strand equals the number of concatenations used in the lowerstrand. Hence when in a fair computation of
0 these concatenations are `de-tached' again we have a fair computation of
 that generates the same string,modulo h. 29.2 Primitive computationsIn the previous section we gave a construction to translate a sticker system
into an equivalent (modulo a coding) sticker system
0 that can do only primi-tive computations. When we only wish to satisfy the weaker requirement thatL(
) equals Lp(
0), i.e., not all computations of
0 have to be primitive, thenwe can use a simple variant of the construction in the proof of Lemma 9.1: just

100 A HIERARCHY OF STICKER FAMILIESremove the markings and the coding. The result is described in the followingtheorem.Theorem 9.4 SL � SLpProof. Construction. Let
 = (�; �;Du;D`; A) be a sticker system. Weconstruct a sticker system
0 = (�; �;D0u;D 0̀ ; A0) with Lp(
0) = L(
) as follows.D0u = Du [fxy j x; y 2 DugD 0̀ = D` [fxy j x; y 2 D`gA0 = A [f(x0x; y0) j (x0; y0) 2 A and x 2 DugCorrectness. Clearly, for each computation of
, the new sticker system
0can do both exactly the same computation and a primitive computation thatgenerates the same string. Now by the proof of Lemma 9.1, if we remove fromthat proof all reference to the markings and the coding, we have L(
) = Lp(
0).2Hence this yields a true primitive normal form for sticker languages (as opposedto the primitive `normal form' from the previous section, where a coding wasneeded): for each sticker language there is a sticker system that needs onlyprimitive computations to generate it.Now let us return to Example 7.1, where we show that ba�b 2 SLp. Sinceit is known that ba�b 62 SL (see page 82), we can re�ne the inclusion in The-orem 9.4 to a proper inclusion. Indeed, the reason that ba�b is not in SL isthat computations in general may be non-primitive and therefore can also de-rive words from ba�ba+ in any sticker system generating all words from ba�b([PR98, Theorem 10]). This already suggests that it is possible to generateba�b when only the primitive computations are taken into account.Corollary 9.5 SL � SLpHence we have SL � SLp � REG. We would now like to know whether thelatter inclusion is proper or not. A candidate language to show that it is propercould be a�ba�, because it seems unlikely that any computation of any stickersystem can `know' whether it has already generated the b or not. However,the following example shows that this problem can be overcome by coding the`state' into the length of the sticky ends. Since a�ba� 62 SL, the example makesessential use of the selectiveness of primitive computations.Example 9.1 We show that a�ba� 2 SLp. The idea is that we need at least oneupper and one lower sticker that both consist of only a's, plus one upper andone lower sticker that both contain one b and possibly some a's before or after it.Moreover, when the latter two stickers appear together in a computation, the

A HIERARCHY OF STICKER FAMILIES 101b's have to match (we use the identity on fa; bg as complementarity relation),and since we only consider primitive computations this must leave a non-emptyoverhang left of the b and a non-empty overhang right of the b (assuming thatthe computation is long enough). To get the correct number of b's in theresulting string, we have to be able to distinguish between the a's before theb and the a's after the b. Since in those parts of the string we can only usestickers consisting entirely of a's, the only way to do this is by ensuring thatthe overhangs occurring before the b are di�erent from the overhangs occurringafter the b.Let
 be the following sticker system:� = f a ; b g� = idDu = f a4 ; b ; aba ; ba2 ; aba3 gD` = f a4 ; ab ; ba ; aba2 ; ba3 ; a2 gA = f (�; a3) ; (a; a4) ; (a2; a5) ; (a3; a6) g [f (aib; aib) ; (aiba; aiba) ; (aiba2; aib);(aiba3; aiba) ; (aiba4; aiba2) j 0 � i � 4 gObserve that the axioms that consist of only a's all have a sticky end of length3 in the lower strand. Now, when we add stickers containing only a's (i.e., a4in the upper strand and a4; a2 in the lower strand) to axioms of this kind, thereare only four sticky ends that can occur, provided that we add the stickers insuch a way that the current sticky end is not prolonged. The relations betweenthese stickers and overhangs are depicted in the �nite automaton below, inwhich we have indicated, e.g., an overhang of 3 a's in the lower strand by thestate 03. When the upper sticker a4 is added to a computation that ends withsuch an overhang, a new overhang of one a in the upper strand is created,denoted by a transition from 03 to 10 labelled by `u : a4'. In the new state 10 it ispossible to add lower sticker a4 (denoted by a transition labelled by ` : a4) ora2 (` : a2), and so on.
) 03 -u : a4 10� ` : a4 -` : a2 01 -u : a4? ` : a2 30� ` : a4Since the above automaton does not have a state 00, it is clear that computationswithout a b are never complete.

102 A HIERARCHY OF STICKER FAMILIESNote that the only matching pairs consisting of an upper and a lower sticker,both containing a b, that can be used in a primitive computation of
 are thefollowing (the pairs are indicated by writing the upper sticker on top of thelower sticker, with the b's matching):b b aba aba baa baa abaaa abaaaab abaa ba baaa ab abaa ba baaaIndeed, in each of these pairs the overhangs before the b (length 1) di�er fromthose after the b (length 0 or 2), and each of these pairs can be attached to acomputation ending in state 01 or 10 in the automaton depicted above. Moreover,after using any such pair we can �nish the computation using a4 in the upperand a4; a2 in the lower strand. The sticky ends that are possible when weadd stickers to the overhangs 02 and 20 are given in the automaton below (sincewe consider only primitive computations, we have to stop when reaching theoverhang 00). 02 -u : a4 20� ` : a4 -` : a2 00Clearly, when we have reached one of these three overhangs, it is not possible toprolong the computation by using stickers containing b's. Note that the axiomsthat contain a b all leave overhangs of length 0 or 2 as well. Consequently, oursticker system ensures that every string in its primitive language is of the forma�ba�.Suppose that we use one of the axioms containing only a's. When in theupper strand the stickers b or ba2 are used, then there are 4j + i a's in front ofthe b, for j � 1 and 0 � i � 3, and after the b there are either 4k a's or 4k + 2a's, for k � 0, respectively. Similarly, when in the upper strand the stickersaba or aba3 are used, then there are 4j + i a's in front of the b, for j � 1 and1 � i � 4, and after the b there are either 4k + 1 a's or 4k + 3 a's, for k � 0,respectively. Thus, when using only the axioms consisting of a's, our stickersystem can generate all strings of the form aibaj for i � 5 and j � 0, usingonly primitive computations. Since primitive computations starting with theother axioms in A yield all strings of the form aibaj for 0 � i � 4 and j � 0,we have a�ba� � Lp(
). 2A logical next step would be to investigate, e.g., whether a�ba�ba� is also in SLp ,since for a�ba� we needed two disjoint groups of overhangs, namely f 03; 10; 01; 30 gand f 02; 20; 00 g, but for a�ba�ba� we would need three. Although it is possible tocreate three disjoint groups of overhangs by using, for instance, a6 as an upper

A HIERARCHY OF STICKER FAMILIES 103sticker and a6 and a3 as lower stickers, which gives the disjoint sets f 01; 50; 20; 04 g,f 02; 40; 10; 05 g and f 03; 30; 00 g, the question whether there exists a sticker systemthat generates a�ba�ba� as its primitive language remains unanswered.9.3 Fair computationsRather surprisingly, it is also possible to generate each sticker language withonly fair computations. The idea behind this is that when a computationalternatingly uses an upper sticker leaving a sticky end in the upper strandand a lower sticker leaving a sticky end in the lower strand, then the di�erencebetween the numbers of upper and lower stickers used can be at most one, i.e.,the computation is either fair or almost fair. Of course, in general it is not thecase that sticky ends occur alternatively in the upper and lower strand. Forinstance, it can happen that the only lower sticker that matches a sticky endin the upper strand is not long enough to match the entire overhang. In sucha case we use a similar technique as when making a computation primitive: weconcatenate as many lower stickers as necessary to create either a sticky end inthe lower strand or a complete computation. Since there is only a �nite numberof axioms and a �nite number of stickers, it can be determined beforehand howmany stickers should be concatenated in the worst case.Theorem 9.6 SL � SLfProof. Construction. Let
 = (�; �;Du;D`; A) be a sticker system. Weconstruct a sticker system
0 = (�; �;D0u;D 0̀ ; A0) with Lf (
0) = L(
) as follows.Let d = max fda; dsg, with da = max fjx0j � jy0j; jy0j � jx0j j (x0; y0) 2 Agand ds = max fjxj j x 2 Du [D`g. Now de�neD0u = fx1 : : : xk j x1; : : : ; xk 2 Du for some k � 1 such thatjx1 : : : xkj � d+max f jxj j x 2 DuggD 0̀ = fx1 : : : xk j x1; : : : ; xk 2 D` for some k � 1 such thatjx1 : : : xkj � d+max f jxj j x 2 D`ggA0 = A [f(x0x0; y0); (x0; y0y0); (x0x; y0y0) j (x0; y0) 2 A; x 2 Du;x0 2 D0u and y0 2 D 0̀gCorrectness. It is obvious that L(
0) � L(
), hence Lf (
0) � L(
).Let (x0x1 : : : xm; y0y1 : : : yn) be a complete computation of
. If jx0j > jy0j,then jx0j � jy0j � d. Let j be the smallest index (1 � j � n) such thatjy1 : : : yjj > jx0j � jy0j (or such that jy1 : : : yjj = jx0j � jy0j if m = 0), thenjy1 : : : yjj � d+max fjyj j y 2 D`g, hence y1 : : : yj 2 D 0̀ .

104 A HIERARCHY OF STICKER FAMILIESNow 0 � jy0y1 : : : yjj � jx0j � d. Assume that 0 < jy0y1 : : : yjj � jx0j(otherwise we proceed with the next paragraph). Let i be the smallest index(1 � i � m) such that jx1 : : : xij > jy0y1 : : : yjj � jx0j (or such that jx1 : : : xij =jy0y1 : : : yjj � jx0j if j = n), then jx1 : : : xij � d + max fjxj j x 2 Dug, thusx1 : : : xi 2 D0u. And so on, until i =m and j = n.Clearly this way of alternatingly adding an upper and a lower sticker to thecomputation, such that the current sticky end is at least completely matched,guarantees that in the end either we used one lower sticker `too many' (if weend with a lower sticker) or the computation is fair (if we end with an uppersticker). In the former situation we make the computation of
0 fair by usingthe axiom (x0; y0y1 : : : yj) 2 A0 instead of (x0; y0) 2 A0.The case where jy0j � jx0j can be treated analogously (if jx0j = jy0j, thenuse the axiom (x0x1; y0) 2 A0 and �nd the smallest index j (1 � j � n) suchthat jy1 : : : yjj � jx1j etcetera).Consequently also L(
) � Lf (
0). 2Note that the computations in
0 constructed in the previous proof are not onlyfair, but also primitive.Corollary 9.7 SL � SLpfWe know from Lemma 8.2 that ba�b 62 SLf , and from Example 7.1 that ba�b 2SLp. Hence SLp 6� SLf .Moreover, Example 7.2 shows that the non-regular language K = fx 2faa; bbg� j #a(x) = #b(x)g is in SLf . Obviously K cannot be in SLp, henceSLf 6� SLp.Lemma 9.8 SLp and SLf are incomparable.Furthermore, because of the language K we can re�ne the inclusion SL � SLfto a proper inclusion.Corollary 9.9 SL � SLf9.4 Primitive fair computationsClearly the primitive fair sticker languages combine some properties of primitiveand fair sticker languages: when only primitive computations are concerned,one has some control over when a computation ends, while fairness allows oneto count and thus to generate non-regular languages. Therefore, the followingtwo examples are not surprising.

A HIERARCHY OF STICKER FAMILIES 105Example 9.2 The regular language ba�b, that is in SLp but not in SL nor inSLf , is in SLpf : consider the sticker system
 = (fa; bg; id; faa; abg; faa; bg; f(ba; baa); (b; ba); (bb; bb)g);that di�ers only from the sticker system given in Example 7.1 in the axiom(ba; baa). Primitive fair computations that start with (b; ba) always generatean odd number of a's:[biha bi[b aihbi [bihaai ha bi[b aihaaihbi etcetera,while the primitive fair computations of
 that start with (ba; baa) alwaysgenerate an even number of a's:[baiha bi[ba aihbi [baihaai ha bi[ba aihaaihbi etcetera.Clearly the three axioms of
 ensure in this way that Lpf (
) = ba�b. 2Example 9.3 Let
 = (fa; b; cg; id;Du;D`; A) be the sticker system de�nedby Du = fbbc; a; acgD` = fcaa; cb; bgA = f(c; �)gThere are only two ways for a (long enough) primitive computation to start:[cihaiha ci[ihc a ai and [cihb b ci[ihc bihbiBoth these ways leave a sticky end consisting of one c in the upper strand,which is the same as the sticky end left by the axiom. Hence each primitivecomputation of
 is composed of two `building blocks', one of which consists ofthe upper stickers a and ac and the lower sticker caa, and the other of uppersticker bbc and lower stickers cb and b. The only way to end a computation iswith such a block of a's (use upper sticker a instead of ac).Furthermore, note that each block of a's as described above uses two upperstickers and one lower sticker, whereas each block of b's uses one upper stickerand two lower stickers. Therefore, primitive computations of
 are only fairwhen an equal amount of blocks of a's and blocks of b's is used. Consequently,Lpf (
) = fw 2 fcaa; cbbg� � caa j #a(w) = #b(w)g. 2Because of these examples we now also have

106 A HIERARCHY OF STICKER FAMILIESLemma 9.10 SL � SLpf , SLpf � SLf 6= ? and SLpf � SLp 6= ?.In view of the previous results on primitive and fair sticker languages, i.e., (1)each fair sticker language is a bca-language because a bca can keep track ofboth the sticky ends and the numbers of stickers used in a computation, and(2) each primitive sticker language is regular since simulation of non-primitivecomputations by a dfa can be prevented by removing all transitions that startin the �nal state, the following lemma is not very surprising.Lemma 9.11 SLpf � 1BCAProof. In the proof of Theorem 8.1, where we show that each fair stickerlanguage is a bca-language, we use bca's Bx0;y0 with L(Bx0;y0) = Lf (
x0;y0),where
 = (�; �;Du;D`; A) is the sticker system under consideration, (x0; y0)is in A and
x0;y0 = (�; �;Du;D`; f(x0; y0)g).Clearly, if we remove all transitions starting in the �nal state of Bx0;y0 ,we have a bca B0x0;y0 with L(B0x0;y0) = Lpf (
x0;y0). Consequently Lpf(
) =S(x0;y0)2A L(B0x0;y0) is a bca-language. 2Combining 1BCA � COD(SLpf) (Lemma 9.2), the previous lemma and the factthat 1BCA is closed under codings now gives the following result.Corollary 9.12 SLpf � 1BCA = COD(SLpf)Concerning SLp and SLf , the problem of �nding constructions to change prim-itive or fair computations into primitive fair computations is still open (i.e., itis open whether SLp � SLpf and SLf � SLpf). The problem here is that oneshould avoid that non-primitive or non-fair computations, respectively, becomeprimitive fair.9.5 SummaryWe recall the most interesting results of this chapter:1. SL � SLp, SL � SLf , SL � SLpf ,2. SLp and SLf are incomparable,3. SLpf � 1BCA,4. SLpf � SLf 6= ? and SLpf � SLp 6= ?,5. a�ba� 2 SLp.There were also some problems that we could not solve: is a�ba�ba� 2 SLp, isSLp � SLpf , and is SLf � SLpf?

Part IIIForbidding and enforcing

107

Chapter 10De�nitions, examples andresearch topicsWe describe a model of molecular computing that is based on boundary con-ditions, that specify the boundaries within which a system may evolve. Morespeci�cally, we consider forbidding conditions, that prevent certain things fromoccurring, and enforcing conditions, that, under the right conditions, causecertain things to occur.10.1 ForbiddingForbidding conditions describe the situation where a system will `die' whenevera certain group of components (parts of molecules) is present in this system.We formalize these conditions by forbidding sets, as follows.De�nition 10.1 A forbidding set is a (possibly in�nite) family of �nite lan-guages over some alphabet �; these �nite languages are called forbidders.A languageK � �� is consistent with a forbidder F � ��, denotedK con F ,if F 6� sub (K). A language K is consistent with a forbidding set F , denotedK con F , if K is consistent with every forbidder in F . 2Example 10.1 Consider the forbidding set F = ffab; bag; faa; bbgg and alanguage K � fa; bg�. Then it is easily seen that K con F if and only ifK � Kifor some i 2 f1; 2; 3; 4g, where K1 = ab� [b�, K2 = a�b[a�, K3 = ba� [a� andK4 = b�a [b�. 2For a forbidding set F we de�ne the family of (F -)consistent languagesL(F) = fK j K con Fg109

110 FORBIDDING AND ENFORCINGand the family of �nite consistent languagesL�n(F) = fK j K is �nite and K con Fg:Note that ? 2 L�n(F) for every F .We say that two forbidding sets F1 and F2 are equivalent, denoted F1 � F2,if L(F1) = L(F2).Example 10.2 Suppose that f�g is a forbidder, contained in a forbiddingset F . Then K con f�g if and only if f�g 6� sub (K) if and only if K = ?.Since a language is consistent with F only if it is consistent with f�g, we haveL(F) = f?g. 2Example 10.3 Let f�; a; bbg be a forbidder and let � = fa; b; cg be an al-phabet. Then K con f�; a; bbg if and only if f�; a; bbg 6� sub (K), which isequivalent to fa; bbg 6� sub (K) since � 2 sub (w) for each w 2 ��. ThereforeL(ff�; a; bbgg) = L(ffa; bbgg) = fK j K � fb; cg�g [fK � �� j bb 62 sub (K)g.2Example 10.4 Let F be the forbidding set ffbaibg j i � 1g, and let K �fa; bg� be a language. Then K con F if and only if baib 62 sub (K) for alli � 1, i.e., K con F if and only if K � fw 2 fa; bg� j baib 62 sub (w) for alli � 1g. Since the latter language equals a�b�a�, when we restrict ourselves tothe alphabet fa; bg we obtain L(F) = fK j K � a�b�a�g. 2From [ER, EH+00] we recall three basic properties of forbidding.Proposition 10.1 Let F be a forbidding set and K a language.(1) K con F implies sub (K) con F(2) If K 0 � K and K con F , then K 0 con F(3) If K1;K2; : : : is an ascending sequence of languages with Ki con F for alli � 1, then (Si�1Ki) con FThe third property above follows from the de�nition of forbidders as �nite sets.Some other simple properties of forbidding are the following. From thede�nitions it is immediately clear that, for two forbidding sets F and F 0 withF 0 � F , we have L(F) � L(F 0).Note that from property (2) it follows that K con F implies (K\K 0) con F ,for any K 0. Hence it is also clear that L(F) is closed under intersection: ifK con F and K 0 con F , then (K \K 0) con F .Furthermore, L(F) is not closed under union. Take for instance F =ffa; bgg, K = fag and K 0 = fbg, then obviously K con F and K 0 con F ,whereas K [K 0 is not consistent with F .

FORBIDDING AND ENFORCING 11110.2 EnforcingIn this section we formalize enforcing conditions, where the presence of a certaingroup of molecules causes the presence of at least one member from anothergroup of molecules.10.2.1 De�nitions and basic propertiesDe�nition 10.2 An enforcing set is a (possibly in�nite) family of orderedpairs (X;Y), where X and Y are �nite languages over some alphabet �, withY 6= ?; such a pair (X;Y) is called an enforcer.A language K � �� satis�es an enforcer (X;Y) with X;Y � ��, denotedK sat (X;Y), ifX � K implies Y \K 6= ?. A language K satis�es an enforcingset E , denoted K sat E , if K satis�es every enforcer in E . 2Let E be an enforcing set. An enforcer (X;Y) 2 E is applicable to a languageK if X � K. If (X;Y) is applicable to K, but Y \K = ?, then (X;Y) is aK-violator.Example 10.5 The family E = f(fu; vg; fuv; vug) j u; v 2 �+g is an enforcingset. If K � �+ satis�es E , then K is closed under `weak catenation': forany two words u; v 2 K at least one of the words uv; vu is in K. Note thatthere are in�nitely many languages satisfying E , each resulting from a di�erent`implementation' of the weak catenation. 2Note the non-deterministic nature of enforcers (X;Y), that is caused by al-lowing Y to include more than one element and by requiring that, given anenforcer (X;Y) and a language K, if the set X of premises is included in K,then at least one element of the set Y of consequences will be included in K.Example 10.6 Let E be the enforcing set f(?; fbng) j n is even g. We referto each enforcer (?; fbng) as a `brute' enforcer, because its premise, the emptyset, is included in every language. Thus if K satis�es E , then K must containthe language fbn j n is even g. 2For an enforcing set E , L(E) = fK j K sat Egis the family of (E-)satisfying languages. Similarly, the family of �nite satisfyinglanguages is de�ned byL�n(E) = fK j K is �nite and K sat Eg:We say that two enforcing sets E1 and E2 are equivalent, denoted E1 � E2, ifL(E1) = L(E2).

112 FORBIDDING AND ENFORCINGIt is obvious that L(E) � L(E 0) for any two enforcing sets E and E 0 withE 0 � E .Considering closure under intersection and union, the following two smallexamples show that L(E) is closed under neither of the two operations. LetE = f(fag; fb; cg)g, and let K = fa; bg and K 0 = fa; cg, then obviously bothK and K 0 satisfy E , but K \ K 0 = fag does not. On the other hand, ifE = f(fa; bg; fcg)g, K = fag andK 0 = fbg, then it is clear that K[K 0 = fa; bgdoes not satisfy E while both K and K 0 do.Note some essential di�erences between forbidding and enforcing: a forbid-der describes a (�nite) group of subwords that should not occur together ina language consistent with this forbidder, whereas an enforcer gives a relationbetween two (�nite) groups of words in a language satisfying this enforcer. As aconsequence of this, a single forbidder may cause the absence of in�nitely manywords, while a single enforcer may cause the presence of one of only �nitelymany words.10.2.2 Evolving through enforcingLet K0 be a language, E an enforcing set, and assume that it is not true thatK0 sat E , i.e., there are (X;Y) 2 E with X � K0 while Y \ K0 = ?. Nowadd, for each of these K0-violators (X;Y), at least one element of Y to K0,and denote by K1 the (possibly in�nite, even when K0 is �nite) superset of K0constructed non-deterministically in this way. Then clearly none of the K0-violators is a K1-violator, but some enforcers that were not applicable to K0may be applicable to K1 and thus may become K1-violators. If so, then repeatthe construction described above, and so on. This iterative `repair procedure'is illustrated in Figure 10.1.The underlying idea of this `evolving procedure' is formalized as follows,in a more general way, that re
ects the fact that when such an `enforcingreaction' takes place in reality (i.e., in nature or in a laboratory), the premisesof the reaction may be consumed (i.e., disappear) during the creation of theconsequences.De�nition 10.3 For an enforcing set E and languages K and K 0 we say thatK 0 is an E-extension of K, written K `E K 0, if X � K implies K 0 \Y 6= ?, foreach (X;Y) 2 E . 2Hence in general it is not necessarily the case that K � K 0, as was the case forthe procedure described above.The E-extension relation expresses the basic computation step induced byE : a molecular system that has to satisfy E evolves according to `E . It is alsoour basic notion for studying computations in the forbidding-enforcing systemsthat we describe later.

FORBIDDING AND ENFORCING 113K0K0 Z0 K1 K0-violators aresatis�ed by K1 = K0 [Z0K1 Z1 K2 K1-violators aresatis�ed by K2 = K1 [Z1...Figure 10.1: Iterative repair procedureThe following proposition from [ER, EH+00] says that the iterative repair pro-cedure above yields the desired result.Proposition 10.2 Let E be an enforcing set and let K1;K2; : : : be an in�-nite ascending sequence of languages. If Ki `E Ki+1 for each i � 1, then(Si�1Ki) sat E.It is instructive to see that the previous result in general does not hold for �niteascending sequences: take for instance E = f(fag; fbg); (fa; bg; fcg)g, and letK1 = fag while K2 = fa; bg. Then K1 � K2 and K1 `E K2 whereas K1 [K2does not satisfy E . This agrees with our intuition: the molecular reactions go onall the time, providing that the needed components (molecules) are available.Thus such reactions may lead out of a �nite language.10.2.3 A �nitary normal formIn this subsection we consider a normal form for enforcing sets. We begin bydistinguishing two �niteness properties of enforcing sets.For a �nite language Z we de�ne E(Z) = f(X;Y) 2 E j X = Zg.De�nition 10.4(1) An enforcing set E is �nitary if, for each �nite language Z, E(Z) is �nite.(2) An enforcing set E is weakly �nitary if for each �nite language K1 thereexists a �nite language K2 such that K1 `E K2. 2If an enforcing set E is �nitary, it means that, for each premise set, E containsonly a �nite number of di�erent enforcers having this premise set. This is asyntactic feature of E . On the other hand, the property of being weakly �nitaryis more of a semantic property { it says something about the e�ect that the

114 FORBIDDING AND ENFORCINGenforcing speci�ed by E has on �nite languages. This e�ect is required to be`continuous': each �nite language can always evolve according to E into a �nitelanguage. Thus one can start with a �nite language and evolve it according toE in a smooth way without `exploding in one step' into an in�nite set.The basic relationship between �nitary and weakly �nitary enforcing setsis given by the following result ([ER, EH+00]).Proposition 10.3(1) Every �nitary enforcing set is weakly �nitary.(2) There exist weakly �nitary enforcing sets that are not �nitary.The fact that every �nitary enforcing set is also weakly �nitary follows fromthe de�nitions.The non-�nitary enforcing set E = f(?; fa; bng) j n � 1g illustrates fact (2)above: clearly, for any �nite language K, we have K `E K [fag, hence E isweakly �nitary.Another result from [ER, EH+00] says that languages K that satisfy �ni-tary enforcing sets E play for their �nite subsets the role of the universe (��),meaning that each �nite subset of K can evolve according to E to another �nitesubset of K.Proposition 10.4 Let E be a �nitary enforcing set, and let K be a languagesuch that K sat E. For every �nite language L � K, there exists a �nite lan-guage L0 � K such that L `E L0.Note that the above result does not hold if we require that E is weakly �nitaryrather than �nitary. To see this consider again the weakly �nitary enforcingset E = f(?; fa; bng) j n � 1g. Let K = fbn j n � 1g, then obviously K sat E .Now let L � K be �nite and assume that L `E L0 for a �nite language L0 � K.Let m = max fn j bn 2 L0g and consider the enforcer E = (?; fa; bm+1g).Obviously L0 \ fa; bm+1g = ?, contradicting L `E L0. Hence L0 cannot be�nite if it has to be a subset of K.The following theorem is one of the main results of the forbidding-enforcingtheory ([ER, EH+00]).Proposition 10.5 For every enforcing set there exists an equivalent �nitaryenforcing set.We show the idea behind the construction described in [ER] to create an equiv-alent �nitary enforcing set for a given E . That construction is rather sophis-ticated, because super
uous enforcers that may result from it are preventedbeforehand. We use here a brute force technique and remove super
uous en-forcers afterwards. We see this brute force technique as the idea behind theconstruction in [ER].

FORBIDDING AND ENFORCING 115Example 10.7 Let � = fa; b; c; d; eg, and let E be the enforcing setf (feg; fa; bg) ; (feg; fa; dg) ; (feg; fb; cg) g [f (feg; fcng) j n � 2g:Note that E is satis�ed by any language not containing e.We create a �nitary equivalent of E by trying to satisfy the enforcers fromE one by one, in an arbitrary but �xed order (we choose the order as writtenabove). Because we use such an order, when we have to satisfy the ith enforcerin it, for an i � 2, we can use the history of choices that we made to satisfythe i� 1 previous enforcers. This history can be represented in a tree.ea ba d a db c b c b c b cc2 c2 c2 c2 c2 c2 c2 c2...The construction is as follows. A language K that satis�es E should at leastsatisfy (feg; fa; bg). Assuming that this is the case { i.e., assuming that ifK contains the word e, then it also contains a or b { the next enforcer inE , (feg; fa; dg), can be replaced by two new enforcers: (fe; ag; fa; dg) and(fe; bg; fa; dg).Then we assume that (fe; ag; fa; dg) and (fe; bg; fa; dg) are also satis�ed.In other words, we assume that K contains the words e and a (and a), or thewords e, a and d, or the words e, b and a, or the words e, b and d. Nowwe can replace the enforcer (feg; fb; cg) 2 E by four new ones: (fe; ag; fb; cg),(fe; a; dg; fb; cg), (fe; b; ag; fb; cg) and (fe; b; dg; fb; cg).In the next step we have to satisfy (feg; fc2g) while assuming that theseven enforcers constructed above are satis�ed. Therefore we add the eightenforcers (fe; a; bg; fc2g), (fe; a; cg; fc2g), (fe; a; d; bg; fc2g), (fe; a; d; cg; fc2g),(fe; b; ag; fc2g), (fe; b; a; cg; fc2g), (fe; b; dg; fc2g) and (fe; b; d; cg; fc2g) (actu-ally these are seven enforcers, since (fe; a; bg; fc2g) is constructed for two rea-sons). And so on for (feg; fc3g), etcetera.Of the new enforcers introduced above, several can be removed, either be-cause they are trivial (the enforcer (fe; ag; fa; dg) is trivial, for instance, sinceif fe; ag � L for some language L, then automatically fa; dg \ L 6= ?), or be-cause their goal is already achieved by another enforcer (e.g., (fe; a; dg; fb; cg)

116 FORBIDDING AND ENFORCINGis super
uous because of (fe; ag; fb; cg)). In Section 11.2.2 we describe whenenforcers may be removed in general.Now let E 0 consist of the enforcers constructed above that are neither trivialnor super
uous, i.e.,(feg; fa; bg) ; (fe; bg; fa; dg) ; (fe; ag; fb; cg);(fe; a; bg; fc2g) ; (fe; a; cg; fc2g) ; (fe; b; dg; fc2g) ; : : :Then E 0 is equivalent to E and �nitary (but still in�nite; in fact, there is noequivalent �nite enforcing set, by the proof of Lemma 11.12). 210.3 Combining forbidding and enforcing10.3.1 De�nitions and examplesDe�nition 10.5 A forbidding-enforcing system (fe system for short) is a con-struct � = (F ; E), where F is a forbidding set and E is an enforcing set. 2The corresponding forbidding-enforcing family (fe family), denoted L(F ; E),consists of all languages that are both F -consistent and E-satisfying. HenceL(F ; E) = L(F) \ L(E).Example 10.8 Let � = fa; bg and let � = (F ; E) be the fe system obtainedby combining the forbidding set F = ffaa; bbg; fab; bagg from Example 10.1and the enforcing set E = f(?; fbng) j n is eveng from Example 10.6. Then alanguage K � �� is in L(F ; E) if and only if K = K 0 [fbn j n is eveng whereeither K 0 � ab� [b� or K 0 � b�a [b�. 2Similar to the situation with forbidding and enforcing sets, we have the follow-ing property: if F 0 � F and E 0 � E , then L(F ; E) � L(F 0; E 0). Another factthat can easily be veri�ed is the equality L(F [F 0; E [E 0) = L(F ; E)\L(F 0; E 0)for any two forbidding sets F ;F 0 and any two enforcing sets E ; E 0.Using the closure properties of L(E) mentioned before it is clear that L(F ; E)is not closed under union or intersection.We carry over the `�nitary' quali�cation of enforcing sets to fe systems inthe obvious way: an fe system � = (F ; E) is �nitary if E is �nitary.We now give some extensive examples to illustrate the general concept offorbidding and enforcing. The examples discuss the representation of dnamolecules, the formalization of the splicing operation, and the satis�abilityand Hamiltonian path problem.

FORBIDDING AND ENFORCING 117Example 10.9 dna molecules, single or (partially) double stranded, can becoded over a suitable alphabet of base pairs. For the matching base pairs wemay use the symbols �at�; �ta�; �cg�; �gc�. For the single stranded pieces we canuse �a.�; �t.�; �c.�; �g.� (upper strand) and � .a�; �.t�; � .c�; � .g� (lower strand). Forthis example we consider languages over the alphabet �base consisting of thesetwelve symbols.We will give some natural requirements on a formal language representingthe set of linear dna molecules. These requirements can be formulated in ourforbidding-enforcing framework.First, of course, no molecule can have an unmatched base in the upperstrand next to an unmatched base in the lower strand. This leads to forbidders� ��:�� :�� 	 and � � :����:� 	 for each �; � 2 fa; t; c; gg.Moreover, note that the molecule denoted by the string �at��cg��c.��cg��t.� isalso denoted by the inverted string �.t��gc�� .c��gc��ta�. We use inv to denote theoperation of inversion, which is the composition of mirror image and replacingeach symbol ���� by ����. Thus, in general, if x denotes a molecule �, thenalso inv (x) denotes �. Consequently, we need an in�nite number of enforcers:(fxg; finv (x)g) for all x 2 �+base.The above set of forbidders and the set of enforcers together yield an fesystem that admits only correct and all correct descriptions of linear dnamolecules. Hence we have: K � �+base is in the fe family de�ned by the aboveforbidders and enforcers if and only if K is a correct description of a set oflinear dna molecules.The e�ect of cutting such molecules by restriction enzymes (see Chapter 1)can easily be translated into enforcing rules. E.g., for the restriction enzymeTaqI (see, e.g., [neb]) we have the enforcer (fx�ta��cg��gc��at�yg; fx�ta�� .g�� .c�g)for each pair x; y 2 �+base. Note that we have enforced only one of the two halves,the other follows by the palindromicity of TaqI and the inversion enforced above.Recombination is then modelled by reversing the rules. E.g., ligating twopieces with overhang gc (one resulting from cutting with TaqI and the other asticky end produced by the restriction enzyme NarI (see, e.g., [neb])) can beenforced by �fx�ta�� .g�� .c�; �c.��g.��cg��cg�yg; fx�ta��cg��gc��cg��cg�yg� : 2Example 10.10 In splicing systems (Part I) the above operations are ab-stracted to the notion of splicing rules. The e�ect of a splicing rule (u1; v1; u2; v2),which says that two words x1u1v1y1 and x2u2v2y2 can be spliced to form theword x1u1v2y2, can be described by an enforcing set as follows:f(fx1u1v1y1; x2u2v2y2g; fx1u1v2y2g) j x1; x2; y1; y2 2 ��g:

118 FORBIDDING AND ENFORCINGMore attractively, and more directly, one may have the rules of the form(fx; y; rg; fwg) where r is the restriction enzyme (after all it is a molecule)and x and y are spliced into w according to r. This seems to be attractive be-cause, as various molecules are created during the evolution of such a system,new (restriction) enzymes may become available and so their e�ects will alsobe produced { in this way we can deal with dynamically changing sets of rules.A splicing rule (u1; v1; u2; v2) may be speci�ed in its usual string repre-sentation u1#v1$u2#v2, whereas an enzyme may be given by its amino acidencoding, hence by a word over an alphabet of 20 symbols. 2Example 10.11 We explain how to describe an instance of the satis�abilityproblem by an fe system. Let 	 = (:x1 _ x3 _ x6) ^ (:x1 _ x2 _ :x6) be aBoolean formula in 3-conjunctive normal form (see, e.g., [GJ79]). It consists oftwo clauses, each of which has to be satis�ed.The two possible truth assignments to the variable xi can be encodedas the strings xbin (i)f for `xi is false' and xbin (i)t for `xi is true', wherebin (i) 2 f0; 1g� is a suitable binary encoding of i. Any language coding atruth assignment must have exactly one of the assignments for each variable.This can be achieved by having the brute enforcers (?; fxvf; xvtg) for eachv 2 f0; 1g� (this constitutes the enforcing set EU), and by having the forbidderfxvf; xvtg for each v 2 f0; 1g� (this constitutes the forbidding set FU).Besides these universally valid restrictions, the formula 	 itself places addi-tional restrictions on the truth assignment. For instance, the clause :x1_x3_x6demands to assign true either to :x1, or to x3, or to x6. Equivalently, it de-mands not to assign false to all of :x1, x3, and x6 at the same time, i.e., itforbids the words x1t, x11f, and x110f to occur at the same time. Hence, the�rst clause is represented by the forbidder fx1t; x11f; x110fg and the secondclause by the forbidder fx1t; x10f; x110tg.In this way, representing each clause by a forbidder, we get the forbidding setF	. Now the `universal' forbidders and enforcers together with the forbiddersde�ned by the formula 	 yield the fe system �	 = (FU [F	; EU). This �	provides a succinct representation for the satis�ability of 	: 	 is satis�able ifand only if L(�) is non-empty. 2Example 10.12 We demonstrate how to transform an instance of the Hamil-tonian Path Problem into an fe system, in such a way that each language inthe corresponding fe family consists of exactly one solution to this instance.Let G = (V;E) be a directed graph with n nodes, and let xin and xf bedesignated initial and �nal nodes of G. A Hamiltonian path of G is a path fromxin to xf that visits each node of G exactly once. Formally, it is a sequencex1; : : : ; xn of nodes of G such that x1 = xin, xn = xf , xi 6= xj for i 6= j, and(xi; xi+1) 2 E for 1 � i < n.

FORBIDDING AND ENFORCING 119Consider the alphabet � = f1; : : : ; ng, and assume that V = �. A pathx1; : : : ; xn of G, where xi 2 V for all 1 � i � n, is coded as the �nite languagef1x1; 2x2; : : : ; nxng � �2, meaning that xi is the ith node on the path.A forbidding-enforcing system (F ; E) for which every language in the cor-responding fe family is an encoding of a Hamiltonian path in G is constructedas follows.First we ensure that each possible solution starts in xin and ends in xf ,by putting (?; f1xing) and (?; fnxfg) in E . Then, we guarantee that eachpossible solution consists of a permutation of the nodes of G, by adding, forevery 1 < i < n, the enforcer (?; fix j x 2 V � fxin; xfgg) to E , and theforbidders fix; jxg for each i 6= j where 1 � i; j � n to F . Finally we forbidconsecutive pairs of nodes between which there is no edge in G through theforbidders fix; i+1yg for (x; y) 62 E and 1 � i < n.Hence there exists a Hamiltonian path in G if and only if L(F ; E) 6= ?. 210.3.2 The structure of computation in fe systemsWe move now to consider the structure of computations in fe systems, and inparticular we claim that for �nitary fe systems there is an elegant representa-tion, in the form of a tree, of all the computations in such a system.We use here the standard notion of a tree. The trees are rooted, node-labelled, they may be in�nite but are always �nitely branching. This meansthat each node has only a �nite number of children (however, we do not assumethat there is a common bound on the number of children for each node). Thelabel of a node v in a tree � is denoted by lab � (v). We call a path in a tree afull path if it starts at the root and either ends at a leaf or is in�nite.De�nition 10.6 Let � = (F ; E) be an fe system, and let � be a tree.Then � is a �-tree if(1) each node label is an element of L�n(F),(2) if a node v2 is a descendant of a node v1, then lab � (v1) � lab � (v2) andlab � (v1) `E lab � (v2). 2Hence the in
uence of the forbidding set is expressed by the sort of node labelsthat are admitted, while the in
uence of the enforcing set is expressed throughthe condition on the sort of languages that can follow each other on a singlepath { this is illustrated in Figure 10.2.We now consider a �-tree where all the languages from L(�), �nite andin�nite, are represented.De�nition 10.7 Let � = (F ; E) be an fe system. A �-tree � is complete if(1) if K 2 L(�) is �nite, then K is a node label of � ,

120 FORBIDDING AND ENFORCING�K1�K2Figure 10.2: K1;K2 2 L�n(F), K1 � K2, and K1 `E K2(2) if K 2 L(�) is in�nite, then there exists an in�nite path � in �such that K = Sv2� lab � (v). 2We know already that �nitary fe systems constitute a normal form for forbidding-enforcing systems meaning that as far as the speci�cations of fe families areconcerned one can restrict oneself to �nitary fe systems. However, the realattraction of �nitary fe systems stems from the following result ([ER, EH+00]).Proposition 10.6 For each �nitary fe system � there exists a complete �-tree.This means that every �nitary fe system � can be `completely' represented bya complete �-tree � , that represents both all languages de�ned by � and allcomputations taking place within �:(1) all �nite languages in L(�) occur as node labels in � ,(2) by taking for each in�nite path the union of all languages along this pathwe get all in�nite languages in L(�),(3) by following all full paths in � we get all evolving computations of �.Since �nitary fe systems form a normal form for fe systems, one can repre-sent all languages de�ned by an arbitrary fe system by a tree, viz., the �-treeof an equivalent �nitary fe system �. What will not carry over is the structureof computations in the original fe system; in particular, the label of a node inthe �-tree is not necessarily an E-extension of the label of its parent, where Eis the enforcing set of the original fe system.Proposition 10.7 For each fe system � there exists a �nitely branching tree� with nodes labelled by �nite languages such that for each language K,K 2 L(�) i� there exists a full path � in � such that K = Sv2� lab � (v).10.4 Research topicsSince forbidding-enforcing is a new model of computation, there are many stan-dard (formal language theory) issues to investigate. In Chapter 11 we discuss,among other subjects, �nite versus in�nite forbidding and enforcing sets, nor-mal forms, and deterministic versus non-deterministic enforcing sets.

FORBIDDING AND ENFORCING 121A number of results concerning fe systems deal with the fact that for anin�nite ascending sequence of languages satisfying certain properties their unionsatis�es the same, or closely related, properties. In Chapter 12 we generalisePropositions 10.1(3) and 10.2, that both deal with sequences of languages inforbidding or enforcing families, and we discuss the di�erent role that �nitelanguages play in the forbidding-enforcing model when compared to standardformal language theory (grammars and automata).

Chapter 11Properties of forbidding setsand enforcing setsWe discuss some basic formal language properties of forbidding sets and en-forcing sets: �niteness versus in�nity, normal forms, and determinism versusnon-determinism in enforcing sets.11.1 Forbidding sets11.1.1 Finite forbidding setsConsider the forbidding set F1 = ffabg; fa2b2g; fa3b3g; : : :g. Clearly, if a lan-guage does not contain the subword ab, then it also does not contain the sub-words aibi for each i � 2, since they all contain ab as a subword. ConsequentlyF1 is equivalent to the �nite forbidding set F2 = ffabgg.Not every in�nite forbidding set has a �nite equivalent, as demonstrated bythe following theorem.Theorem 11.1 There are forbidding sets for which there is no equivalent �niteforbidding set.Proof. For a �nite forbidding set F , let ` = maxfjwj j w 2 SF2F Fg. Now,if for two words x and y it is the case that sub (x)j�` = sub (y)j�`, then Fcannot distinguish between x and y. In other words, for each F 2 F it holdsthat F 6� sub (x) if and only if F 6� sub (y), hence fxg 2 L(F) if and only iffyg 2 L(F).Now consider Feven = ffab2ag; fab4ag; fab6ag; : : :g. For each `, the wordsx = ab`a and y = ab`+1a di�er only on subwords of length greater than `.Clearly fxg 2 L(Feven) if and only if fyg 62 L(Feven). Hence L(Feven) 6= L(F)for all �nite F . 2123

124 PROPERTIES OF FORBIDDING SETS AND ENFORCING SETS11.1.2 Two useful normal formsWe started the previous subsection with an example of a forbidding set thatcould be reduced in size by removing certain parts of it. In this subsection weformalize the conditions under which we can do the same for arbitrary forbid-ding sets, i.e., we discuss how redundancy can be removed from an arbitraryforbidding set without changing the family of consistent languages.One kind of redundancy occurs within forbidders, as described in the fol-lowing example and lemma.Example 11.1 Consider the forbidder fa; b; abg. A language K is consistentwith fa; b; abg if a 62 sub (K) or b 62 sub (K) or ab 62 sub (K). Clearly in each ofthese three cases ab cannot be a subword of K, hence K con fa; b; abg impliesK con fabg. Conversely, if ab 62 sub (K), then obviously fa; b; abg 6� sub (K).Consequently K con fa; b; abg if and only if K con fabg, and we may replacefa; b; abg by its subset fabg. 2The crucial point in the above example is the fact that a and b are subwordsof ab. In other words, the forbidder fa; b; abg is not subword free and thereforecontains redundancy. This redundancy can be removed very easily, as shownby the following lemma.We call a forbidding set subword free if all its forbidders are subword free.Lemma 11.2 For every forbidding set there exists an equivalent subword freeforbidding set.Proof. Given a forbidding set F , consider F 0 = fsubmax(F) j F 2 Fg, then itis obvious that every F 0 2 F 0 is subword free. Moreover, it is clear that, for allF 2 F and all languages K, F � sub (K) if and only if submax(F) � sub (K).Consequently L(F) = L(F 0). 2Another way of reducing redundancy is to remove super
uous forbidders, likein the example given in Subsection 11.1.1. The crucial point there is the factthat the forbidder fabg consists of a subword of each of the other forbidders.This observation can be generalised as follows.Lemma 11.3 Let F be a forbidding set, and let F1; F2 2 F with F1 6= F2.If sub (F1) � sub (F2), then F � F � fF2g.Proof. It is clear that L(F) � L(F � fF2g). Moreover, F1 6� sub (K) for alanguage K implies sub (F1) 6� sub (K). Since sub (F1) � sub (F2) then alsosub (F2) 6� sub (K) which implies F2 6� sub (K), and thus L(F�fF2g) � L(F).Consequently F � F � fF2g. 2

PROPERTIES OF FORBIDDING SETS AND ENFORCING SETS 125As an aside, note that it may be that sub (F) = sub (F 0), for two di�erentforbidders F and F 0 (this is the case for, for instance, the forbidders fa; abgand fb; abg). Also note that this cannot occur when both F and F 0 are subwordfree, since then sub (F) = sub (F 0) if and only if F = F 0 (Lemma 2.1).We can generalise Lemma 11.3 to removing a (possibly in�nite) subset of aforbidding set, instead of just one element.Lemma 11.4 Let F and F 0 be forbidding sets with F 0 � F such that for eachF 2 F there is an F 0 2 F 0 with sub (F 0) � sub (F). Then F 0 � F .Proof. Clearly L(F) � L(F 0).To prove that L(F 0) � L(F), note that the condition in the lemma meansthat for each F 2 F there is an F 0 2 F 0 such that K con F 0 implies K con F ,for a language K. Consequently, if K con F 0 for all F 0 2 F 0, then also K con Ffor all F 2 F . 2We de�ne two di�erent forbidders F1 and F2 to be subword incomparable ifneither sub (F1) � sub (F2) nor sub (F2) � sub (F1). We call a forbidding set Fsubword incomparable if each pair of distinct forbidders F1 and F2 is subwordincomparable. Note that if we have sub (F1) 6� sub (F2) for all F1; F2 2 F withF1 6= F2, then we also have F1 6� F2 for all F1; F2 2 F with F1 6= F2.Lemma 11.5 For every forbidding set there is an equivalent subword incom-parable forbidding set.Proof. Let F be a forbidding set. Because of Lemma 11.2 we may assume thatF is subword free. Now de�ne F 0 = fF 0 2 F j there is no F 00 2 F such thatF 00 6= F 0 and sub (F 00) � sub (F 0)g. Note that we need the subword freeness ofF to ensure that also forbidders that are di�erent but have the same subwordsare represented in F 0 (by the set of maximal subwords of one of them).It is clear from the de�nition that F 0 cannot contain two di�erent forbid-ders F1 and F2 with sub (F1) � sub (F2) or vice versa, hence F 0 is subwordincomparable.To prove that F 0 � F we will apply Lemma 11.4. Observe that indeedF 0 � F , and that for each F 2 F there is an F 0 2 F 0 with sub (F 0) � sub (F):consider F 2 F . Either F 2 F 0, or there exists an F1 2 F such that F1 6= Fand sub (F1) � sub (F). Again, either F1 2 F 0, or we can �nd an F2 2 Fwith F2 6= F1 and sub (F2) � sub (F1). In this way we obtain a sequenceF0; F1; F2 : : : in F such that F0 = F , Fi+1 6= Fi and sub (Fi+1) � sub (Fi),for each i � 0. Because F is subword free, Fi+1 6= Fi implies sub (Fi+1) 6=sub (Fi), and consequently sub (Fi+1) � sub (Fi). Since each sub (Fi) is �nite,this implies that our construction ends in a �nite number of steps, and we�nally �nd a forbidder Fk 2 F such that Fk 2 F 0 and sub (Fk) � sub (F).Hence Lemma 11.4 is applicable and thus we obtain F 0 � F . 2

126 PROPERTIES OF FORBIDDING SETS AND ENFORCING SETSIf a forbidding set is subword incomparable, then no forbidder can be removedwithout changing the family of consistent languages.Lemma 11.6 Let F be a forbidding set.If F is subword incomparable, then L(F) � L(F � fFg) for every F 2 F .Proof. It is obvious that L(F) � L(F � fFg).We prove the strictness of the inclusion by demonstrating that F 2 L(F �fFg) but not F 2 L(F), for an arbitrary forbidder F 2 F . Obviously, F is notconsistent with itself, thus F 62 L(F).Furthermore, since F is subword incomparable, sub (G) 6� sub (F) for allG 2 F � fFg, and thus also G 6� sub (F) for all G 2 F � fFg. ConsequentlyF con G for all G 2 F � fFg, and thus F 2 L(F � fFg). 211.1.3 Minimal forbidding setsWe say that a forbidding set F is in minimal normal form if F is both sub-word free and subword incomparable. Since obviously the forbidding set F 0constructed in the proof of Lemma 11.5 has both these properties, `minimalnormal form' is indeed a normal form.Lemma 11.7 For each forbidding set there exists an equivalent forbidding setin minimal normal form.A forbidding set in minimal normal form is indeed minimal, or `redundancyfree', in the sense that removing one of its forbidders or even one element fromone forbidder yields a forbidding set that is not equivalent to the original one.This follows from Lemma 11.6 and the following result.Lemma 11.8 Let F be a forbidding set that contains a forbidder F = ff1; : : : ;fn; wg for some n � 1, with w 6= fi for all 1 � i � n, and let F 0 = (F �fFg) [fF 0g, where F 0 = ff1; : : : ; fng. If F is in minimal normal form, thenL(F 0) � L(F).Proof. To prove L(F 0) � L(F) we need that, for all languages K, K 2 L(F 0)implies K 2 L(F). Since the only di�erence between F and F 0 is that F 0contains F 0 instead of F , it suÆces to prove that K con F 0 implies K con F ,which is true because from F 0 � F it follows that F 0 6� sub (K) implies F 6�sub (K).It is clear that F 0 con F 0 does not hold, because F 0 2 F 0, thus to prove thatL(F)�L(F 0) 6= ?, it suÆces to demonstrate that F 0 con F , i.e., F 0 con F andF 0 con G for all G 2 F with G 6= F .

PROPERTIES OF FORBIDDING SETS AND ENFORCING SETS 127For F 0 to be consistent with F , we need F 6� sub (F 0), i.e., ff1; : : : ; fn; wg 6�sub (ff1; : : : ; fng). Since F is subword free, we have w 62 sub (fi) for all 1 �i � n and hence w 62 sub (ff1; : : : ; fng). Consequently F 0 con F .Now let G 2 F with G 6= F . Then F 0 con G if and only if G 6� sub (F 0),which is the same as sub (G) 6� sub (F 0). We know that sub (G) 6� sub (F),because F is subword incomparable. Since F 0 � F and thus sub (F 0) � sub (F),we now have sub (G) 6� sub (F 0). Consequently F 0 con G for all G 2 F withG 6= F . Therefore L(F 0) � L(F). 2Moreover, for each forbidding set there is only one equivalent forbidding setthat is in minimal normal form.Lemma 11.9 If two forbidding sets F and F 0 are both in minimal normalform and F � F 0, then F = F 0.Proof. It suÆces to prove F � F 0. Let F 2 F . Then F 62 L(F) = L(F 0).Hence there is an F 0 2 F 0 such that F 0 � sub (F). Similarly, since F 0 2 F 0,there is an F 00 2 F such that F 00 � sub (F 0). Consequently sub (F 00) � sub (F),and, since F is subword incomparable, F 00 = F . Hence sub (F) = sub (F 0) andso (by Lemma 2.1, since F and F 0 are subword free) we have F = F 0. ThusF 2 F 0. 2Hence the conclusion of this subsection is the following.Theorem 11.10 For every forbidding set there exists a unique equivalent for-bidding set in minimal normal form.Because of this theorem, and since a forbidding set in minimal normal formis indeed minimal, as demonstrated in Lemma's 11.6 and 11.8, we introduce anotation for it: min (F).11.1.4 Maximal forbidding setsFor a forbidding set F , we de�ne the setmax (F) = fK j K is �nite and not K con Fg:Note that max(F) is also a forbidding set (i.e., a family of �nite languages), andthat, since each F 2 F is not consistent with F , it holds that F � max (F).It is easy to argue that max (F) is maximal in the sense that it cannot beextended by adding a forbidder: in that case a new �nite language is addedto max (F). This language can be either consistent or inconsistent with F . Inthe former case it violates the de�nition of max (F), whereas in the latter caseit was already in max (F), since max (F) contains all �nite languages that arenot consistent with F .The following result shows that, for every F , max (F) is equivalent to F .

128 PROPERTIES OF FORBIDDING SETS AND ENFORCING SETSLemma 11.11 Let F be a forbidding set. Then F � max (F).Proof. Since F � max (F) it is clear that L(max (F)) � L(F).Now letK 2 L(F), i.e., for all F 2 F it holds that F 6� sub (K). We have toprove that G 6� sub (K) for allG 2 max(F). For each such G there is an F 0 2 Fwith F 0 � sub (G). Since F 0 6� sub (K) it also holds that sub (G) 6� sub (K),which is equivalent to G 6� sub (K). Hence K 2 L(max (F)). 2The names of min (F) and max (F), for a forbidding set F , are well chosen:if F is subword free (which is a normal form), then min (F) � F � max (F),and as we have seen above, min (F) and max (F) are minimal and maximal,respectively, in the sense that nothing can be removed from min (F) withoutchanging the family of consistent languages, and no forbidder can be added tomax (F).11.1.5 A tree representation for consistent familiesEvery language K can be described as a sequence of �nite languages, namelyK = Si�0Kj�i. Note that Kj�i � Kj�i+1 for every i � 0, and that, if K and Lare di�erent languages and ` is the length of a shortest word in (K�L)[(L�K),then Kj�i = Lj�i for all 0 � i < `. Moreover, if F is a forbidding set, then itfollows from Proposition 10.1(2) and (3) that K con F if and only ifKj�i con Ffor all i � 0 (see also Section 12.4).All these observations together suggest a representation of L(F) by a tree(rooted, �nitely branching, with possibly in�nite paths), in which the nodesare labelled by �nite languages consistent with F , i.e., the node labels areelements of L�n(F). The node labels on level ` are those languages in L�n(F)that contain only words of length ` or smaller, for ` � 0 (and the root of thetree has level 0). A node labelled X is the unique parent of a node with labelY if and only if X 6= Y and X = fy 2 Y j jyj is less than the length of thelongest word in Y g, i.e., if and only if X is extended to Y by adding words ofone particular length that is greater than the length of the largest word in X.11.2 Enforcing sets11.2.1 Finite enforcing setsIn our approach we allow in�nite enforcing sets. Unfortunately one cannotrestrict oneself to �nite enforcing sets only. This is caused by the fact that�nite enforcing sets cannot have any e�ect on words longer than a certainlength and thus have in
uence on only a �nite number of words. Consequentlythe following lemma can be proved.Lemma 11.12 If E is a �nite enforcing set, then L(E) contains a �nite lan-guage.

PROPERTIES OF FORBIDDING SETS AND ENFORCING SETS 129Proof. If E is a �nite enforcing set, then we can de�ne n = maxfjwj j w 2 Yfor some (X;Y) 2 Eg. Thus the �nite language �j�n satis�es E , because forevery enforcer (X;Y) 2 E it holds that Y \ �j�n 6= ?. Consequently L(E)contains a �nite language. 2Indeed, this lemma implies that �nite enforcing sets are strictly less powerfulthan in�nite enforcing sets.Lemma 11.13 There are enforcing sets for which there is no equivalent �niteenforcing set.Proof. Let a 2 �, and let E = f(?; fag)g [f(fwg; fwag) j w 2 �+g. Clearly,a+ � K for allK 2 L(E). Consequently L(E) does not contain a �nite language,thus by Lemma 11.12 cannot be de�ned by a �nite enforcing set. 211.2.2 Normal formsApart from the �nitary normal form for enforcing sets described in Subsec-tion 10.2.3, two other normal forms can be proved.First, an enforcer may be super
uous on its own: enforcers (X;Y) withX \ Y 6= ? are always satis�ed and therefore can be omitted. These enforcersare called `trivial' in Example 10.7.Second, some enforcers make other enforcers super
uous, as shown below.Lemma 11.14 Let E be an enforcing set, and let (X;Y) and (X 0; Y 0) be twodi�erent enforcers in E with X � X 0 and Y � Y 0. Then E � E � f(X 0; Y 0)g.Proof. It is clear that L(E) � L(E � f(X 0; Y 0)g).To prove that L(E �f(X 0; Y 0)g) � L(E) we show that K sat (X;Y) impliesthat K sat (X 0; Y 0), for (X;Y) and (X 0; Y 0) as in the statement of the lemma.If X 0 � K then X � K, hence Y \K 6= ?, and so Y 0 \K 6= ?. 2Hence we may always assume that, for the enforcing set E under consideration,for each enforcer (X;Y) 2 E it holds that X \Y = ?, and for each pair (X;Y)and (X 0; Y 0) of enforcers it holds that X 6� X 0 or Y 6� Y 0.11.2.3 Deterministic enforcing setsIn connection with Example 10.5 we mentioned the fact that the de�nition ofenforcer allows non-determinism in the sense that, for an enforcer E = (X;Y),if E is applicable to a language K but not satis�ed by K, then to make Ksatisfy E it suÆces to add any non-empty subset of Y to K. Obviously, thereis no non-determinism involved if Y is a singleton.

130 PROPERTIES OF FORBIDDING SETS AND ENFORCING SETSThus we call an enforcer (X;Y) deterministic if jY j = 1, and we say thatan enforcing set is deterministic if all its enforcers are deterministic.Deterministic enforcing sets are less powerful than non-deterministic ones,i.e., every enforcing family de�ned by a deterministic enforcing set is { byde�nition { also de�ned by a non-deterministic enforcing set, but not the otherway around.To explain this, consider the enforcing set E = f(?; fa; bg)g, that is non-deterministic and for which L(E) = fL j L contains a or bg (where a 6= b). Since? 62 L(E), the family L(D) of languages satisfying an equivalent deterministicenforcing set D should also not contain ?, which means that D should containat least one enforcer of the form (?; fzg) for some word z. Now, if z 6= aand z 6= b, then L(D) does not contain the languages containing a or b butnot z. Moreover, if z = a, then none of the languages containing b but not asatis�es D, and similarly for the case that z = b. Hence L(D) 6= L(E) for everydeterministic enforcing set D.Another way to argue that E cannot be equivalent to D is the observationthat L(E) contains disjoint languages, whereas L(D) cannot contain disjointlanguages because of (?; fzg).The non-deterministic enforcing set E from the previous two paragraphs israther special because the only enforcer is `brute', i.e., of the form (?; Y). Todemonstrate that this is not the only reason why deterministic enforcing sets areless powerful than non-deterministic ones, in the proof below we give anothernon-deterministic enforcing set, that does not have this special property, andwe show that it also does not have a deterministic equivalent.Theorem 11.15 There are enforcing sets without brute enforcers for whichthere is no equivalent deterministic enforcing set.Proof. Take the non-deterministic enforcing set E = f(fag; fb; cg)g (where a,b and c are di�erent words), and observe L(E) \ P(fa; b; cg) = f?; fbg; fcg;fa; bg; fa; cg; fb; cg; fa; b; cgg. If there exists a deterministic enforcing set Dwith L(D) = L(E), then it should also hold that L(D) \ P(fa; b; cg) = L(E) \P(fa; b; cg). We show that there is no deterministic enforcing set D such thatthe latter equation holds.First, note that for D we only have to consider enforcers (X;Y) with X �fa; b; cg and Y = fag or Y = fbg or Y = fcg: if w 2 X for some w 6= a; b; c,then we may discard this enforcer since it is not applicable to any language inP(fa; b; cg), whereas if Y = fwg for some w 6= a; b; c, then application of suchan enforcer (if possible) gives a language not in P(fa; b; cg).Second, note that D cannot contain an enforcer of the form (?; Y) for anyY , since E does not contain enforcers of this form. In other words, L(E) containsthe empty language, thus L(D) should also contain ?.Third, we only have to look at enforcers of the form (X;Y) for which X \Y = ? (this is a normal form discussed in the previous subsection).

PROPERTIES OF FORBIDDING SETS AND ENFORCING SETS 131From the above it follows that there are only nine possible enforcers for thepart of D that should de�ne L(E) \ P(fa; b; cg):(fbg; fag) (fag; fbg) (fag; fcg)(fcg; fag) (fcg; fbg) (fbg; fcg)(fb; cg; fag) (fa; cg; fbg) (fa; bg; fcg)For the three enforcers of the form (X; fag) we have that the language fb; cgdoes not satisfy them. Hence D should not contain any of these three enforcers.The six other cases can be shown to be inappropriate in a similar way. Thus thepart of D that accounts for L(E) \ P(fa; b; cg) can only be empty, but in thatcase the language fag satis�es D, which should not be the case. Consequentlythere is no deterministic enforcing set that is equivalent to E . 2One consequence of an enforcing set being deterministic is that it makes thenotions `�nitary' and `weakly �nitary' equivalent (see Subsection 10.2.3).Theorem 11.16 Let E be a deterministic enforcing set.Then E is �nitary if and only if E is weakly �nitary.Proof. We prove that non-�nitary deterministic enforcing sets E cannot beweakly �nitary. Assume that, for a certain �nite language X, the set E(X) isin�nite, i.e., E is not �nitary. Let K be a language such that X `E K. Since Eis deterministic, K must contain the set fy j (X; fyg) 2 Eg, which is an in�niteset because E(X) is in�nite. Thus K cannot be �nite, and E is not weakly�nitary.Combining the above with Proposition 10.3(1) completes the proof of theresult. 211.3 SummaryWe summarize the more important results of this chapter. Both for forbiddingsets and for enforcing sets, we have shown how to remove redundancy fromthese sets, by proving a series of normal forms. In the case of forbidding setswe could even prove that for each forbidding set a unique redundancy freeequivalent can be constructed.We demonstrated that these normal forms cannot always yield a �nite equiv-alent, i.e., we have proved that in�nite forbidding and enforcing sets are strictlymore powerful than �nite ones.Furthermore, we have shown that non-determinism is an essential featureof enforcing sets, in the sense that there are non-deterministic enforcing setsfor which there is no deterministic equivalent.

Chapter 12Sequences of languages inforbidding-enforcing familiesA number of results concerning fe systems deal with the fact that for an in�niteascending sequence of languages satisfying certain properties, their union satis-�es the same, or closely related, properties. We generalise some of these results,mainly by lifting them to converging sequences of languages (in the topologi-cal sense). Furthermore, we discuss in detail the importance of (sequences of)�nite languages in forbidding and enforcing families.In order to simplify notation, throughout this chapter we consider an arbi-trary but �xed alphabet �, i.e. every word, language or family of languages isover �, unless clear otherwise.12.1 Converging sequences of languagesBy hKiii2N we denote the in�nite sequence K1;K2; : : : of languages. We de�nethe distance between two languages K and L as follows:d(K;L) = � 0 if K = L2�minfjxj j x2K4Lg otherwisewhere K 4L = (K � L) [(L�K) is the symmetric di�erence of K and L. Itis fairly easy to verify that d satis�es the usual requirements for (ultrametric)distances ([BV96]):1. d(K;L) = 0 if and only if K = L,2. d(K;L) = d(L;K), and3. d(K;L) � maxfd(K;M); d(M;L)gwhere K;L;M are languages. 133

134 SEQUENCES IN FORBIDDING-ENFORCING FAMILIESFor ` � 0 we have, by de�nition, d(K;L) < 2�` if and only if Kj�` = Lj�`.In other words: the longer the shortest word that `separates' K from L, thesmaller the distance between K and L.Let us now consider the usual notion of convergence: an in�nite sequencehKiii2N of languages converges to a language K if d(Ki;K)! 0 when i!1.Hence the distance between elements of the sequence hKiii2N and its limit Kwill become arbitrarily small. As this distance is measured in terms of thelength of the shortest word in the symmetric di�erence, we can rephrase thenotion of convergence as follows.De�nition 12.1 An in�nite sequence of languages hKiii2N converges to a lan-guage K, denoted hKiii2N ! K, if, for each ` � 0, there is an m � 1 such thatKnj�` = Kj�` for every n � m. 2The following easy observation is a frequently used `technical tool' in investi-gating converging sequences of languages. Assume that hKiii2N ! K. If X isa �nite language such that X � K, then there is an m � 1 such that X � Knfor every n � m.Example 12.11. hfangin2N ! ?, since, for every ` � 0, fangj�` = ? = ?j�` for alln � `+ 1.2. Analogously, h��j>nin2N ! ?.3. The ascending sequence of languages hfa1; : : : ; angin2N converges to a+,since fa1; : : : ; a`gj�` = a+j�` for all ` � 0.4. Analogously, hfa1; : : : ; an; bn+1gin2N ! a+. Note, however, that this isnot an ascending sequence. 2The framework of metric spaces has been proposed to deal with the semanticsof recursion (and with in�nite computations in general) by Nivat ([Niv79], seealso [BV96]).12.2 Forbidding-enforcing families are closed setsWe repeat Proposition 10.1(3), which is very useful in analysing families ofconsistent languages.Proposition 12.1 Let F be a forbidding set, and let hKiii2N be an ascendingsequence of languages. If Ki con F for all i � 1, then (SiKi) con F .

SEQUENCES IN FORBIDDING-ENFORCING FAMILIES 135The following lemma is a generalisation of Proposition 12.1, in the sense thatwe do not require a sequence of ascending languages, the union of which equalsa certain language K, but rather a sequence of languages converging to K.Note that if hKiii2N is an ascending sequence, then indeed hKiii2N ! (SiKi).Lemma 12.1 Let F be a forbidding set and K a language. If hKiii2N is anin�nite sequence of languages with hKiii2N ! K and Ki con F for all i � 1,then K con F .Proof. Assume that not K con F , i.e., there exists an F 2 F such thatF � sub (K). Hence F � sub (X) for a �nite X � K. Since hKiii2N ! Kthere is an m � 1 such that X � Kn for all n � m. Thus F � sub (Km), whichcontradicts Km con F . 2An analogous result holds for enforcing sets.Lemma 12.2 Let E be an enforcing set and K a language. If hKiii2N is anin�nite sequence of languages with hKiii2N ! K and Ki sat E for all i � 1,then K sat E.Proof. Let (X;Y) 2 E and choose k = maxf jwj j w 2 X [Y g. SincehKiii2N ! K there is an m � 1 such that Kmj�k = Kj�k. We know thatKm sat (X;Y), hence X � Km implies Km \ Y 6= ?. But X � Km if andonly if X � K, and Km \ Y = K \ Y , since X and Y do not contain wordsof length greater than k. Thus Km sat (X;Y) implies K sat (X;Y). Conse-quently, K sat (X;Y) for every (X;Y) 2 E . 2Lemma 12.1, Lemma 12.2 and the fact that L(F ; E) = L(F) \ L(E) directlyimply that L(F ; E) is a closed set ([Smy92]), where a family of languages C iscalled a closed set if, for each sequence hKiii2N of languages in C, hKiii2N ! Kimplies that K 2 C.Theorem 12.3 Let (F ; E) be an fe system. Then L(F ; E) is a closed set inthe topology induced by the metric d.12.3 Evolving sequences of languagesThe basic computational feature of an fe system is `evolving through enforcing',determined by the enforcing set of the system. It is formalized through theextension relation, see De�nition 10.3.In this section we discuss sequences of languages in which each language isan E-extension of its direct predecessor, for an enforcing set E . In other words,

136 SEQUENCES IN FORBIDDING-ENFORCING FAMILIESeach language in such a sequence evolves into its direct successor according tothe E-extension relation `E .We recall an important result on in�nite ascending evolving sequences, thatsays that for such a sequence the union of the languages occurring in it satis�esE (Proposition 10.2).Note that, unlike in [EH+00], here we do not assume that K `E L impliesK � L { the latter is also the setup in [ER]. (This assumption was made in[EH+00] because we considered there ascending sequences of languages.) There-fore, `E in general is not a transitive relation, although for ascending sequencesit is transitive. For example, take E = f (fag; fbg); (fag; fcg); (fbg; fag) g,then fag `E fb; cg `E fag, but not fag `E fag. Because of this non-transitivity,Ki `E Ki+1 seems to be a rather local property, even if it holds for every i � 1in some sequence of languages hKiii2N .Still, the E-extension relation turns out to be strong enough to yield thefollowing result.Theorem 12.4 Let E be an enforcing set and K a language. If hKiii2N is anin�nite sequence of languages with hKiii2N ! K and Ki `E Ki+1 for all i � 1,then K sat E.Proof. Assume that (X;Y) 2 E with X � K. Since X and Y are �nite, wecan de�ne k = maxf jwj j w 2 X [Y g. Because hKiii2N ! K there is an ` � 1such that Kjj�k = Kj�k for all j � `, hence X � Kj for all j � `.Then Y \K`+1 6= ? since X � K` and K` `E K`+1. Because `+ 1 � ` wehave K`+1j�k = Kj�k, hence Y \K`+1 = Y \K 6= ?. 212.4 The importance of �nite languagesIn this section we consider (possibly in�nite) sequences of (speci�c) �nite lan-guages { the underlying observation is that every language K can be writtenin the form K = Sn�0Kj�n. Note that hKj�nin�0 converges to K.Proposition 10.1 (2) and (3) together yield the following result, which statesthat consistence of certain speci�c �nite parts of a language K is necessary andsuÆcient to ensure the consistence of K itself.Theorem 12.5 K con F if and only if Kj�n con F for every n � 0.For enforcing sets the situation is slightly di�erent, because enforcers force thepresence of certain words, whereas forbidders prevent the occurrence of certainsets of subwords (see also the remark at the end of Subsection 10.2.1).We de�ne Ej�n to be f(X;Y) 2 E j jwj � n for all w 2 X [Y g.Theorem 12.6 K sat E if and only if Kj�n sat Ej�n for every n � 0.

SEQUENCES IN FORBIDDING-ENFORCING FAMILIES 137Proof. Assume that K sat E . Take an arbitrary n � 0, and consider (X;Y) 2Ej�n. Obviously, X � K if and only if X � Kj�n, and Y \K = Y \ Kj�n.Hence K sat E implies Kj�n sat Ej�n.On the other hand, if Kj�n sat Ej�n for every n � 0, then it also holds that(Kj�n [��j>n) sat E for every n � 0. Since hKj�n [��j>nin�0 ! K, we canapply Lemma 12.2 to obtain K sat E . 2Note that the sequence hKj�n[��j>nin�0 used in the proof above is descendingrather than ascending.The membership of a language in an fe family is determined by its �niteportions only; this is an elementary consequence of the fact that these familiesare closed sets.Theorem 12.7 Let K be an fe family, and K a language. If, for each n � 0,there is an L 2 K with Kj�n = Lj�n, then K 2 K.Proof. Let K = L(F ; E), and let, for every n � 0, Ln 2 K be a language withLnj�n = Kj�n. Since hLnin�0 ! K, Theorem 12.3 gives K 2 K. 2We state now two interesting corollaries of Theorem 12.7.Corollary 12.8 Let K1 and K2 be fe families.If, for all n � 0, fKj�n j K 2 K1g = fKj�n j K 2 K2g, then K1 = K2.Proof. Let K 2 K1. Then, according to the condition in the corollary, forevery n � 0 there is an Ln 2 K2 with Kj�n = Lnj�n. Hence by Theorem 12.7we have K 2 K2, and thus K1 � K2. Obviously, K2 � K1 can be provedanalogously. 2It is perhaps super
uous to remark that the implication of Corollary 12.8 doesnot hold for arbitrary K1 and K2, as can be seen by letting K1 and K2 be therespective families of �nite and in�nite languages over a �xed alphabet.Suppose that an fe family K contains all �nite languages over a certainalphabet �. Then Kj�n 2 K for each language K over this alphabet and eachn � 0, hence according to the theorem K 2 K for all K.Corollary 12.9 Let K be an fe family and � � �. If K contains all �nitelanguages over �, then it contains all languages over �.This second corollary also follows directly from the de�nitions of forbiddingand enforcing, which is seen as follows. Let K = L(F ; E).If every �nite L � �� is consistent with F , then every forbidder F � �� inF should be consistent with F as well. Hence these forbidders cannot exist inF . Consequently, every F 2 F contains at least one symbol from � �� andthus M con F holds for all M � ��.

138 SEQUENCES IN FORBIDDING-ENFORCING FAMILIESFurthermore, enforcers (X;Y) such that X contains symbols from ��� areobviously not applicable to languages over �. Now let (X;Y) 2 E withX � ��.Then X sat (X;Y) should hold, since every �nite language over � satis�es E .In other words, it should be the case that X \ Y 6= ?. Obviously, such anenforcer is satis�ed by every language. This ends our alternative explanationof Corollary 12.9.We consider now separately families of languages de�ned by forbidding setsand families of languages de�ned by enforcing sets.For forbidding families the �nite languages are most crucial: in fact, theydetermine the family.Theorem 12.10 For all forbidding sets F1 and F2 the following holds:L(F1) = L(F2) if and only if L�n(F1) = L�n(F2).Proof. It is clear that L(F1) = L(F2) implies L�n(F1) = L�n(F2).Now let L con F1. Then Lj�i con F1 for all i � 0, and because L�n(F1) =L�n(F2) also Lj�i con F2 for all i � 0. Now Theorem 12.5 gives L con F2.Analogously it can be proved that L con F2 implies L con F1. 2Unlike for forbidding families, �nite languages are not particularly importantfor families of satisfying languages. This can be shown as follows.Example 12.2 Let K be a language, and let hwiii2N be an arbitrary but�xed ordering of the words of K. Similarly, let hviii2N be an arbitrary but�xed ordering of the elements of �� � K. Now consider the enforcing setEK = f (?; fw1g) g[f (fwig; fwi+1g) j i � 1g[f (fvig; fv1g); (fvig; fvi+1g) ji � 1g, then L(EK) = fK;��g.Now clearly for every �nite language K we have L�n(EK) = fKg, whereasfor in�nite K we have L�n(EK) = ?. Hence for any two di�erent in�nitelanguages K and K 0 we have L�n(EK) = L�n(EK0) = ?, whereas L(EK) 6=L(EK0). 2The results of this section point out a crucial di�erence between languagesde�ned by fe systems and languages de�ned by classical grammars, such as,e.g., Chomsky grammars. As demonstrated above, �nite languages are veryimportant for fe systems { they in fact determine fe language families. Onthe other hand, �nite languages are irrelevant for Chomsky grammars: if alanguage L is of type X (regular, context-free, context-sensitive, : : :), then soare L [F and L� F , for every �nite language F .12.5 SummaryWe have extended Proposition 10.1(3) { that states that if every language inan ascending sequence of languages is consistent with the forbidding set F ,

SEQUENCES IN FORBIDDING-ENFORCING FAMILIES 139then the union of these languages is consistent with F as well { to the moregeneral notion of converging sequences of languages in forbidding, enforcing orforbidding-enforcing families.A similar result was known for in�nite ascending evolving sequences of lan-guages (Proposition 10.2). We have extended this result to in�nite convergingevolving sequences.Finally, we have illustrated that �nite (parts of) languages are character-istic for fe families, by showing that the membership of a language in an fefamily is determined by speci�c �nite subsets of that language, that if an fefamily contains all �nite languages over a certain alphabet, then it contains alllanguages over this alphabet, and that two forbidding sets are equivalent if andonly if they de�ne the same �nite languages.

Bibliography[Adl94] L.M. Adleman. Molecular computation of solutions to combinatorialproblems, Science 226:1021{1024, 1994.[Aho90] A.V. Aho. Algorithms for �nding patterns in strings, Handbook of theo-retical computer science (J. van Leeuwen, ed.) volume A:255{300, ElsevierScience Publishers, 1990.[Amo97] M. Amos. dna computation, Ph.D. thesis, Department of ComputerScience, University of Warwick, UK, 1997.[AU70] A.V. Aho, J.D. Ullman. A characterization of two-way deterministicclasses of languages, Journal of Computer and System Sciences 4(6):523{538, 1970.[BV96] J. de Bakker, E. de Vink. Control
ow semantics, MIT Press, Cam-bridge, MA, 1996.[BZ99] P. Bonizzoni, R. Zizza. Deciding whether a regular language is a splicinglanguage, Technical Report, Dipartimento di Scienze dell' Informazione,2000.[CH91] K. Culik II, T. Harju. Splicing semigroups of dominoes and dna, Dis-crete Applied Mathematics 31:261{277, 1991.[DHV01] J. Dassen, H.J. Hoogeboom, N. van Vugt. A characterization of non-iterated splicing with regular rules,Where mathematics, computer science,linguistics and biology meet (C. Mart��n-Vide, V. Mitrana, eds.) 319-327,Kluwer, 2001.[Dic13] L.E. Dickson. Finiteness of the odd perfect and primitive abundantnumbers with n distinct prime factors, American Journal of Mathematics35:413{422, 1913.[EH+00] A. Ehrenfeucht, H.J. Hoogeboom, G. Rozenberg, N. van Vugt. For-bidding and enforcing, dna based computers V (E. Winfree, D.K. Gi�ord,eds.), DIMACS Series in Discrete Mathematics 54 (1999 proceedings),2000. 141

142 BIBLIOGRAPHY[EH+01] A. Ehrenfeucht, H.J. Hoogeboom, G. Rozenberg, N. van Vugt. Se-quences of languages in forbidding-enforcing families, Soft Computing5(2):121{125, 2001.[ER] A. Ehrenfeucht, G. Rozenberg. Forbidding-enforcing systems,manuscript.[FMR68] P.C. Fischer, A.R. Meyer, A.L. Rosenberg. Counter machines andcounter languages, Mathematical Systems Theory 2:265{283, 1968.[FP+98] R. Freund, Gh. P�aun, G. Rozenberg, A. Salomaa. Bidirectional stickersystems, Third Annual Paci�c Conference on Biocomputing, Hawaii, 1998(R.B. Altman, A.K. Dunker, L. Hunter, T.E. Klein, eds.), 535{546, WorldScienti�c, Singapore, 1998.[FS97] H. Fernau, R. Stiebe. Regulation by valences, Mathematical Founda-tions of Computer Science 1997, Lecture Notes in Computer Science 1295(Igor Pr��vara, Peter Ruzicka, eds.), 239{248, Springer-Verlag, 1997.[FS00] H. Fernau, R. Stiebe. Sequential grammars and automata with valences,technical report WSI-2000-25, Wilhelm-Schickard-Institut f�ur Informatik,Universit�at T�ubingen, 2000.[GG69] S. Ginsburg, S.A. Greibach. Abstract families of languages, Memoirsof the American Mathematical Society 87:1{32, 1969.[Gin75] S. Ginsburg.Algebraic and automata-theoretic properties of formal lan-guages, North-Holland/American Elsevier, 1975.[GJ79] M.R. Garey, D.S. Johnson. Computers and intractability, a guide to thetheory of NP-completeness, Bell Telephone Laboratories, 1979.[Goo99] E. Goode Laun. Constants and splicing systems, Dissertation, StateUniversity of New York at Binghamton, 1999.[Gre78] S.A. Greibach. Remarks on blind and partially blind one-way multi-counter machines, Theoretical Computer Science 7:311{324, 1978.[Gre79] S.A. Greibach. Linearity is polynomially decidable for realtime push-down store automata, Information and Control 42(1):27{37,1979.[Har67] J. Hartmanis. Context-free languages and Turing machine computa-tions, Mathematical Aspects of Computer Science 19:42{51, Proc. Symp.Applied Mathematics (J.T. Schwartz, ed.), American Mathematical Soci-ety, 1967.

BIBLIOGRAPHY 143[Hea87] T. Head. Formal language theory and dna: an analysis of the genera-tive capacity of speci�c recombinant behaviors, Bulletin of MathematicalBiology 49(6):737{759, 1987.[Hea98] T. Head. Splicing languages generated with one-sided context, Com-puting with bio-molecules: theory and experiments (Gh. P�aun, ed.), 269{282, Springer-Verlag, Singapore, 1998.[HH99] V. Halava, T. Harju. Languages accepted by integer weighted �niteautomata, Jewels are forever (J. Karhum�aki, H. Maurer, Gh. P�aun, G.Rozenberg, eds.), 123{134, Springer-Verlag, 1999.[Hoo02] H.J. Hoogeboom. Context-free valence grammars { revisited, Devel-opments in Language Theory 2001 (W. Kuich, G. Rozenberg, A. Salomaa,eds.), Lecture Notes in Computer Science 2295:293-303, Springer-Verlag,2002.[HPP97] T. Head, Gh. P�aun, D. Pixton. Language theory and molecular ge-netics: generative mechanisms suggested by dna recombination, Handbookof formal languages (G. Rozenberg, A. Salomaa, eds.), volume 2: 295{360,Springer-Verlag, 1997.[HU79] J.E. Hopcroft, J.D. Ullman. Introduction to automata theory, lan-guages, and computation, Addison-Wesley, 1979.[HV98] H.J. Hoogeboom, N. van Vugt. The power of H systems: does repre-sentation matter? Computing with bio-molecules: theory and experiments(Gh. P�aun, ed.), 255{268, Springer-Verlag, Singapore, 1998.[HV00] H.J. Hoogeboom, N. van Vugt. Fair sticker languages, Acta Informatica37: 213{225, 2000.[HV02] H.J. Hoogeboom, N. van Vugt. Upper bounds for restricted splicing,Formal and natural computing - essays dedicated to Grzegorz Rozenberg(W. Brauer, H. Ehrig, J. Karhum�aki, A. Salomaa, eds.), Lecture Notes inComputer Science 2300:361{375, Springer Verlag, 2002.[KP+98] L. Kari, Gh. P�aun, G. Rozenberg, A. Salomaa, S. Yu. dna computing,sticker systems, and universality, Acta Informatica 35:401{420, 1998.[KPS96] L. Kari, Gh. P�aun, A. Salomaa. The power of restricted splicing withrules from a regular language, Journal of Universal Computer Science2(4):224-240, 1996.[Lat79] M. Latteux. Cônes rationnels commutatifs, Journal of Computer andSystem Sciences 18:307{333, 1979.

144 BIBLIOGRAPHY[LLR85] M. Latteux, B. Leguy, B. Ratoandromanana. The family of one-counter languages is closed under quotient, Acta Informatica 22:579{588,1985.[neb] New England BioLabs Catalog 1998/1999.[Niv79] M. Nivat. In�nite words, in�nite trees, in�nite computations, Foun-dations of computer science III, part 2 (Languages, logic, semantics)(J. W. de Bakker, J. van Leeuwen, eds.), 3{52, Mathematical Centre Am-sterdam, 1979.[P�au80] Gh. P�aun. A new generative device: valence grammars, RevueRoumaine de Math�ematiques Pures et Appliqu�ees 25(6):911{924, 1980.[P�au96a] Gh. P�aun. On the splicing operation, Discrete Applied Mathematics70:57{79, 1996.[P�au96b] Gh. P�aun. Regular extended H systems are computationally univer-sal, Journal of Automata, Languages and Combinatorics 1(1):27{36, 1996.[P�au98] Gh. P�aun (ed.). Computing with bio-molecules: theory and experi-ments, Springer-Verlag, Singapore, 1998.[Pix95] D. Pixton. Linear and circular splicing systems, Proceedings of the 1stInternational Symposium on Intelligence in Neural and Biological Systems,38{45, IEEE, 1995.[Pix96] D. Pixton. Regularity of splicing languages, Discrete Applied Mathe-matics 69:101-124, 1996.[PR98] Gh. P�aun, G. Rozenberg. Sticker systems, Theoretical Computer Sci-ence 204:183{203, 1998.[PRS96a] Gh. P�aun, G. Rozenberg, A. Salomaa. Computing by splicing, The-oretical Computer Science 168:321{336, 1996.[PRS96b] Gh. P�aun, G. Rozenberg, A. Salomaa. Restricted use of the splic-ing operation, International Journal of Computer Mathematics 60:17{32,1996.[PRS98] Gh. P�aun, G. Rozenberg, A. Salomaa. dna computing. New computingparadigms, Springer-Verlag, 1998.[RS97] G. Rozenberg, A. Salomaa (eds.). Handbook of formal languages,Springer-Verlag, 1997.

BIBLIOGRAPHY 145[RW+98] S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Good-man, P.W.K. Rothemund, L.M. Adleman. A sticker based model for dnacomputation, dna based computers II, DIMACS Series in Discrete Math-ematics 44 (1996 proceedings), 1998.[RW99] H. Rubin, D.H. Wood. dna based computers III, DIMACS Series inDiscrete Mathematics 48 (1997 proceedings), 1999.[Smy92] M. B. Smyth. Topology, Handbook of logic in computer science(Background: mathematical structures) (S. Abramsky, D. M. Gabbay,T. S. E. Maibaum, eds.), 641{761, Oxford Science Publications, 1992.[Win98] E. Winfree. Algorithmic self-assembly of dna, Ph.D. thesis, CaliforniaInstitute of Technology, Pasadena, California, 1998.[WYS98] E. Winfree, X. Yang, N.C. Seeman. Universal computation via self-assembly of dna: some theory and experiments, dna based computers II,DIMACS Series in Discrete Mathematics 44 (1996 proceedings), 1998.

SamenvattingGemotiveerd door een experiment van Adleman, dat gepubliceerd is in Science,zijn informatici tegenwoordig ge��nteresseerd in de mogelijkheden die dna kanbieden om complexe berekeningen te maken. We hebben onderzoek gedaannaar drie modellen die drie verschillende processen beschrijven die met (dna-)moleculen te maken hebben. Alledrie de modellen zijn opgesteld binnen deformele-talentheorie, wat wil zeggen dat we moleculen weergeven als rijtjesletters in plaats van als een complexe biochemische structuur. Zo'n rijtje letterswordt een string genoemd, en een verzameling van strings heet een (formele)taal. Een taal kan eindig of oneindig veel strings bevatten, en iedere taal heefteen bepaalde moeilijkheidsgraad (behoort tot een bepaalde talenfamilie): deeindige talen zijn eenvoudiger dan de oneindige, en binnen de oneindige talenbestaan ook weer gradaties. Ook als een taal oneindig veel strings bevat, is ervaak een eindige beschrijving van te geven. De moeilijkheidsgraad van de taalwordt bepaald door het type beschrijving.DNAWe leggen nu eerst kort uit wat dna is en welke eigenschappen ervan door deeerste twee modellen die we bekeken hebben beschreven worden.De bouwstenen van dna zijn vier basen (deelmoleculen), die worden aange-duid met de letters a, c, g en t. Heel eenvoudig gezegd bestaat een (dubbel-strengs) dna-molecuul uit twee rijtjes basen, die complementair zijn: een aplakt altijd op een t en andersom, en een c plakt altijd op een g en an-dersom. Schematisch kan zo'n dubbelstrengs dna-molecuul als volgt wordenweergegeven: a a t c g a gt t a g c t cHet kan ook voorkomen dat de bovenste of de onderste streng ontbreekt { danheet het een enkelstrengs molecuul { of dat er aan het linker- en/of rechteruitein-de een enkelstrengs stuk uitsteekt (boven of onder). In het laatste geval noemenwe het molecuul gedeeltelijk dubbelstrengs. Enkelstrengs moleculen en/of uit-steeksels kunnen aan elkaar plakken en zo een langer molecuul vormen, mitsde enkelstrengs stukken complementair zijn zoals hierboven beschreven:

a a t ca g c t c + g a g c a + a gg t t c = a a t c g a g c a a ga g c t c g t t cDit aan elkaar plakken van enkelstrengs stukken dna gebeurt spontaan (d.w.z.vanzelf), en is een belangrijk onderdeel van Adlemans experiment. Het tweedemodel dat wij bekijken { stickersystemen { is een formalisatie van dit spontaanaan elkaar plakken.Het eerste model dat we behandelen { splicingsystemen { is gebaseerd opeen andere eigenschap van dna: de moleculen kunnen worden doorgeknipt doorrestrictie-enzymen. Een restrictie-enzym zoekt altijd een bepaald rijtje basenop in een dna-molecuul, en knipt dan het molecuul door op een vaste plekbinnen dat rijtje, of juist een zeker aantal plekken verderop. Dit doorknippengebeurt niet noodzakelijk recht, maar soms met uitsteeksels zoals hieronderaangegeven voor de enzymen TaqI en SciNI :a a t c g a gt t a g c t c? 6 -TaqI a a tt t a g c + c g a gt ca g c g c c ct c g c g g g? 6 -SciNI a gt c g c + c g c c cg g gDe zo ontstane moleculen met uitsteeksels kunnen dan weer aan elkaar of aanandere geschikte uitsteeksels plakken.We zullen nu �e�en voor �e�en de drie modellen die we onderzocht hebbenbeschrijven.SplicingSplicingsystemen beschrijven de gevolgen van het in twee stukken knippen vandna-moleculen door restrictie-enzymen en het vervolgens spontaan weer aanelkaar plakken van de stukken. (Het Engelse werkwoord `to splice' betekent`verbinden' of `koppelen'.) Omdat zo'n stuk van een dna-molecuul niet alleenaan zijn oorspronkelijke wederhelft gekoppeld kan worden, maar ook aan eenstuk dat van een ander molecuul is geknipt, ontstaat op deze manier uit debeginverzameling moleculen een nieuwe verzameling.Zowel de dna-moleculen zelf als het knipgedrag van restrictie-enzymenkunnen worden weergegeven als strings. Hieruit volgt dat een verzamelingmoleculen gerepresenteerd kan worden door een taal, en een verzameling en-zymen ook. Een splicingsysteem bestaat uit een begintaal (de moleculen) eneen regeltaal (de enzymen), en produceert zelf weer twee soorten talen: de eenbestaat uit alle strings die ontstaan door regels uit de regeltaal �e�en keer toe tepassen op strings uit de begintaal, de ander uit alle strings die je kunt krijgen

door herhaald regels toe te passen op beginstrings, maar ook op strings die tij-dens dit proces ontstaan zijn. In beide gevallen kun je bekijken welke invloedde moeilijkheidsgraden van begin- en regeltaal hebben op de moeilijkheidsgraadvan de resulterende taal.Ons onderzoek naar splicingsystemen gaat over drie verschillende aspectenervan. We zijn begonnen met het bekijken van andere stringrepresentaties vanenzymen dan de representatie die standaard in de literatuur gebruikt wordt.Daaruit is gebleken dat het in de meeste (maar niet alle) gevallen niet uitmaaktwelke van de onderzochte representaties je gebruikt. Daarna hebben we aange-toond dat in een aantal gevallen de moeilijkheidsgraad van regeltalen verlaagdkan worden van (de eenvoudigste vorm van) oneindig naar eindig. Tenslottehebben we bekeken wat de hoogste moeilijkheidsgraden zijn die de resulterendetalen kunnen bereiken als je extra eisen gaat opleggen aan het toepassen vanregels op strings, zoals bijvoorbeeld `de resulterende string moet altijd langerzijn dan de beide beginstrings'.StickersStickersystemen zijn een formalisatie van het spontaan aan elkaar plakkenvan complementaire stukjes dna. De stickersystemen die wij bekeken hebbenbestaan uit een eindig aantal gedeeltelijk dubbelstrengs beginmoleculen eneen eindig aantal stickers (enkelstrengs moleculen), die verdeeld zijn in tweegroepen: onder- en bovenstickers. Een berekening van een stickersysteembestaat uit een beginmolecuul met aan de rechterkant eindig veel boven- enonderstickers eraan vastgeplakt, zodat een volledig dubbelstrengs molecuulontstaat; de bovenstickers mogen alleen in de bovenste streng gebruikt worden,de onderstickers alleen in de onderste streng. Behalve aan complementaire uit-steeksels mogen stickers hier ook aan (de rechterkant van) een molecuul zonderuitsteeksel plakken. Een berekening kan er dan schematisch als volgt uitzien(de twee blokjes zijn de boven- en onderstreng van het beginmolecuul, de hori-zontale lijntjes stellen de stickers voor, en de verticale stippellijn geeft een posi-tie aan waar een boven- en een ondersticker tegen een volledig dubbelstrengsmolecuul zijn geplakt in plaats van aan een complementair uitsteeksel):
Een berekening wordt fair genoemd als er evenveel boven- als onderstickers ingebruikt worden, en primitief als iedere sticker aan een uitsteeksel geplakt is.De berekening hierboven is dus niet fair en niet primitief.De (gewone sticker-) taal van een stickersysteem bestaat uit alle strings diebovenstrengen van berekeningen van dat systeem representeren; de stickertaalheet fair (primitief) als je alleen naar faire (primitieve) berekeningen kijkt.

Ons onderzoek op het gebied van stickersystemen bestaat uit twee delen:het vinden van een goede (d.w.z. zo precies mogelijke) bovengrens voor demoeilijkheidsgraad van faire stickertalen, en het zoeken naar verschillen enovereenkomsten tussen verzamelingen van gewone, faire, primitieve en primitieffaire stickertalen. Uit dit laatste onderzoek is onder andere gebleken dat degewone stickertaal (van een willekeurig stickersysteem) ook gegenereerd kanworden met alleen maar faire berekeningen (door een ander stickersysteem), enook met alleen maar primitieve of alleen maar primitief faire berekeningen.Forbidding en enforcingHet derde model dat we onderzocht hebben beschrijft een heel ander soortmoleculaire systemen, die zich binnen bepaalde grenzen vrij kunnen ontwik-kelen. In het bewuste model, forbidding-enforcingsystemen, wordt de ontwik-keling van het systeem gestuurd door enforcingcondities maar tegelijkertijdbeperkt door forbiddingcondities.Iedere enforcingconditie zegt dat wanneer een bepaald eindig groepje mole-culen in het systeem aanwezig is er ook ooit minstens �e�en molecuul uit een andereindig groepje zal ontstaan (door een reactie tussen de al aanwezige moleculen).Dus de enforcingcondities zorgen ervoor dat er steeds nieuwe moleculen aanhet systeem worden toegevoegd. Forbiddingcondities daarentegen beperkende evolutie van het systeem door bepaalde eindige groepjes deelmoleculen teverbieden (het systeem gaat `dood' als alle deelmoleculen uit zo'n groepje ophetzelfde moment in het systeem voorkomen).Net als in de andere twee modellen beschrijven we moleculen weer metbehulp van strings. In tegenstelling tot splicing- en stickersystemen levert eenforbidding-enforcingsysteem niet �e�en enkele taal op, maar een hele verzamelingtalen: alle talen die voldoen aan de condities.We hebben onderzocht hoe we het aantal forbidding- en enforcingconditieskunnen terugbrengen zonder de verzameling van talen die eraan voldoen teveranderen. Het bleek dat je soms zelfs een oneindige set condities kunt ver-vangen door een eindige set, maar lang niet altijd. Naast nog een paar anderetypisch formele-talenvraagstukken hebben we ook gekeken naar eigenschappenvan reeksen van talen die aan de condities voldoen, zoals reeksen waarin iederetaal een uitbreiding is van zijn voorganger (willekeurig, of juist strikt volgensde enforcingcondities), en convergerende reeksen. Zulke taalreeksen stellen inzekere zin de ontwikkeling van het systeem voor, binnen de grenzen die doorde twee typen condities worden aangegeven.

Curriculum vitaeNik�e van Vugt is geboren in Waspik, Noord-Brabant, op 23 januari 1972. Van1984 tot 1990 bezocht zij het Dr. Mollercollege te Waalwijk, waar zij met lof hetGymnasium B diploma behaalde. Van 1990 tot 1996 studeerde zij Informaticaaan de Universiteit Leiden, en slaagde daarnaast voor de propedeuse FranseTaal- en Letterkunde en een aantal vakken van Algemene Taalwetenschap. Delaatste twee jaar van haar studie gaf zij ook werkgroepen aan studenten. In1996 begon zij, nog steeds in Leiden, aan haar promotieonderzoek op het gebiedvan de Theoretische Informatica (i.h.b. dna computing), onder begeleiding vanprof. dr. G. Rozenberg en dr. H.J. Hoogeboom.

Titles in the IPA Dissertation SeriesJ.O. Blanco. The State Operator in Pro-cess Algebra. Faculty of Mathematics andComputing Science, TUE. 1996-1A.M. Geerling. Transformational Devel-opment of Data-Parallel Algorithms. Fac-ulty of Mathematics and Computer Science,KUN. 1996-2P.M. Achten. Interactive Functional Pro-grams: Models, Methods, and Implementa-tion. Faculty of Mathematics and ComputerScience, KUN. 1996-3M.G.A. Verhoeven. Parallel Local Search.Faculty of Mathematics and Computing Sci-ence, TUE. 1996-4M.H.G.K. Kesseler. The Implementationof Functional Languages on Parallel Ma-chines with Distrib. Memory. Faculty ofMathematics and Computer Science, KUN.1996-5D. Alstein. Distributed Algorithms forHard Real-Time Systems. Faculty of Mathe-matics and Computing Science, TUE. 1996-6J.H. Hoepman. Communication, Synchro-nization, and Fault-Tolerance. Faculty ofMathematics and Computer Science, UvA.1996-7H. Doornbos. Reductivity Arguments andProgram Construction. Faculty of Mathe-matics and Computing Science, TUE. 1996-8D. Turi. Functorial Operational Semanticsand its Denotational Dual. Faculty of Math-ematics and Computer Science, VUA. 1996-9A.M.G. Peeters. Single-Rail HandshakeCircuits. Faculty of Mathematics and Com-puting Science, TUE. 1996-10N.W.A. Arends. A Systems EngineeringSpeci�cation Formalism. Faculty of Mechan-ical Engineering, TUE. 1996-11P. Severi de Santiago. Normalisation inLambda Calculus and its Relation to Type In-ference. Faculty of Mathematics and Com-puting Science, TUE. 1996-12D.R. Dams. Abstract Interpretation andPartition Re�nement for Model Checking.

Faculty of Mathematics and Computing Sci-ence, TUE. 1996-13M.M. Bonsangue. Topological Dualitiesin Semantics. Faculty of Mathematics andComputer Science, VUA. 1996-14B.L.E. de Fluiter. Algorithms for Graphsof Small Treewidth. Faculty of Mathematicsand Computer Science, UU. 1997-01W.T.M. Kars. Process-algebraic Transfor-mations in Context. Faculty of ComputerScience, UT. 1997-02P.F. Hoogendijk. A Generic Theory ofData Types. Faculty of Mathematics andComputing Science, TUE. 1997-03T.D.L. Laan. The Evolution of Type The-ory in Logic and Mathematics. Faculty ofMathematics and Computing Science, TUE.1997-04C.J. Bloo. Preservation of Termination forExplicit Substitution. Faculty of Mathemat-ics and Computing Science, TUE. 1997-05J.J. Vereijken. Discrete-Time Process Al-gebra. Faculty of Mathematics and Comput-ing Science, TUE. 1997-06F.A.M. van den Beuken. A FunctionalApproach to Syntax and Typing. Faculty ofMathematics and Informatics, KUN. 1997-07A.W. Heerink. Ins and Outs in RefusalTesting. Faculty of Computer Science, UT.1998-01G. Naumoski and W. Alberts. ADiscrete-Event Simulator for Systems Engi-neering. Faculty of Mechanical Engineering,TUE. 1998-02J. Verriet. Scheduling with Communica-tion for Multiprocessor Computation. Fac-ulty of Mathematics and Computer Science,UU. 1998-03J.S.H. van Gageldonk. An AsynchronousLow-Power 80C51 Microcontroller. Fac-ulty of Mathematics and Computing Sci-ence, TUE. 1998-04

A.A. Basten. In Terms of Nets: SystemDesign with Petri Nets and Process Algebra.Faculty of Mathematics and Computing Sci-ence, TUE. 1998-05E. Voermans. Inductive Datatypes withLaws and Subtyping { A Relational Model.Faculty of Mathematics and Computing Sci-ence, TUE. 1999-01H. ter Doest. Towards ProbabilisticUni�cation-based Parsing. Faculty of Com-puter Science, UT. 1999-02J.P.L. Segers. Algorithms for the Simula-tion of Surface Processes. Faculty of Mathe-matics and Computing Science, TUE. 1999-03C.H.M. van Kemenade. RecombinativeEvolutionary Search. Faculty of Mathemat-ics and Natural Sciences, Univ. Leiden.1999-04E.I. Barakova. Learning Reliability: aStudy on Indecisiveness in Sample Selection.Faculty of Mathematics and Natural Sci-ences, RUG. 1999-05M.P. Bodlaender. Schedulere Optimiza-tion in Real-Time Distributed Databases.Faculty of Mathematics and Computing Sci-ence, TUE. 1999-06M.A. Reniers. Message Sequence Chart:Syntax and Semantics. Faculty of Mathe-matics and Computing Science, TUE. 1999-07J.P. Warners. Nonlinear approaches tosatis�ability problems. Faculty of Mathe-matics and Computing Science, TUE. 1999-08J.M.T. Romijn. Analysing Industrial Pro-tocols with Formal Methods. Faculty of Com-puter Science, UT. 1999-09P.R. D'Argenio. Algebras and Automatafor Timed and Stochastic Systems. Facultyof Computer Science, UT. 1999-10G. F�abi�an. A Language and Simulator forHybrid Systems. Faculty of Mechanical En-gineering, TUE. 1999-11J. Zwanenburg. Object-Oriented Conceptsand Proof Rules. Faculty of Mathematicsand Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an IntegratedNeural Prediction System. Faculty of Math-ematics and Natural Sciences, RUG. 1999-13J. Saraiva. A Purely Functional Imple-mentation of Attribute Grammars. Facultyof Mathematics and Computer Science, UU.1999-14R. Schiefer. Viper, A Visualisation Toolfor Parallel Progam Construction. Fac-ulty of Mathematics and Computing Sci-ence, TUE. 1999-15K.M.M. de Leeuw. Cryptology and State-craft in the Dutch Republic. Faculty ofMathematics and Computer Science, UvA.2000-01T.E.J. Vos. UNITY in Diversity. A strati-�ed approach to the veri�cation of distributedalgorithms. Faculty of Mathematics andComputer Science, UU. 2000-02W. Mallon. Theories and Tools for theDesign of Delay-Insensitive CommunicatingProcesses. Faculty of Mathematics and Nat-ural Sciences, RUG. 2000-03W.O.D. GriÆoen. Studies in ComputerAided Veri�cation of Protocols. Faculty ofScience, KUN. 2000-04P.H.F.M. Verhoeven. The Design of theMathSpad Editor. Faculty of Mathematicsand Computing Science, TUE. 2000-05J. Fey. Design of a Fruit Juice Blendingand Packaging Plant. Faculty of MechanicalEngineering, TUE. 2000-06M. Franssen. Cocktail: A Tool for Deriv-ing Correct Programs. Faculty of Mathemat-ics and Computing Science, TUE. 2000-07P.A. Olivier. A Framework for DebuggingHeterogeneous Applications. Faculty of Nat-ural Sciences, Mathematics and ComputerScience, UvA. 2000-08E. Saaman. Another Formal Speci�cationLanguage. Faculty of Mathematics and Nat-ural Sciences, RUG. 2000-10M. Jelasity. The Shape of EvolutionarySearch Discovering and Representing SearchSpace Structure. Faculty of Mathematicsand Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-putational approach to knowledge, observa-tion and communication. Faculty of Mathe-matics and Computing Science, TU/e. 2001-02M. Huisman. Reasoning about Java pro-grams in higher order logic using PVS andIsabelle. Faculty of Science, KUN. 2001-03I.M.M.J. Reymen. Improving De-sign Processes through Structured Re
ection.Faculty of Mathematics and Computing Sci-ence, TU/e. 2001-04S.C.C. Blom. Term Graph Rewriting: syn-tax and semantics. Faculty of Sciences, Divi-sion of Mathematics and Computer Science,VUA. 2001-05R. van Liere. Studies in Interactive Visual-ization. Faculty of Natural Sciences, Mathe-matics and Computer Science, UvA. 2001-06A.G. Engels. Languages for Analysis andTesting of Event Sequences. Faculty ofMathematics and Computing Science, TU/e.2001-07J. Hage. Structural Aspects of SwitchingClasses. Faculty of Mathematics and Natu-ral Sciences, UL. 2001-08M.H. Lamers. Neural Networks for Analy-sis of Data in Environmental Epidemiology:A Case-study into Acute E�ects of Air Pol-lution Episodes. Faculty of Mathematics andNatural Sciences, UL. 2001-09T.C. Ruys. Towards E�ective ModelChecking. Faculty of Computer Science, UT.2001-10D. Chkliaev. Mechanical veri�cation ofconcurrency control and recovery protocols.Faculty of Mathematics and Computing Sci-ence, TU/e. 2001-11

M.D. Oostdijk. Generation and presenta-tion of formal mathematical documents. Fac-ulty of Mathematics and Computing Sci-ence, TU/e. 2001-12A.T. Hofkamp. Reactive machine control:A simulation approach using �. Faculty ofMechanical Engineering, TU/e. 2001-13D. Bo�sna�cki. Enhancing state space re-duction techniques for model checking. Fac-ulty of Mathematics and Computing Sci-ence, TU/e. 2001-14M.C. van Wezel. Neural Networks for In-telligent Data Analysis: theoretical and ex-perimental aspects.. Faculty of Mathematicsand Natural Sciences, UL. 2002-01V. Bos and J.J.T. Kleijn. Formal Speci-�cation and Analysis of Industrial Systems.Faculty of Mathematics and Computer Sci-ence and Faculty of Mechanical Engineering,TU/e. 2002-02T. Kuipers. Techniques for UnderstandingLegacy Software Systems. Faculty of Nat-ural Sciences, Mathematics and ComputerScience, UvA. 2002-03S.P. Luttik. Choice Quanti�cation in Pro-cess Algebra. Faculty of Natural Sciences,Mathematics, and Computer Science, UvA.2002-04R.J. Willemen. School Timetable Con-struction: Algorithms and Complexity. Fac-ulty of Mathematics and Computer Science,TU/e. 2002-05M.I.A. Stoelinga. Alea Jacta Est: Veri�-cation of Probabilistic, Real-time and Para-metric Systems.. Faculty of Science, Math-ematics and Computer Science, KUN. 2002-06N. van Vugt. Models of Molecular Com-puting. Faculty of Mathematics and NaturalSciences, UL. 2002-07

