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Preface

This thesis comprises three parts, each of which discusses a model of (some as-
pects of ) molecular computing: splicing systems, sticker systems, and forbidding-
enforcing systems. All three models are rooted in formal language theory. The
three parts are preceded by an introduction, which discusses the basic structure
of DNA molecules as well as the origin of each of the models, and by preliminar-
ies, which provide the main concepts of formal language theory that are used
throughout the thesis.

Each part starts with a chapter that defines the model discussed in that
part, gives examples and basic submodels, and ends with a description of the
open problems that we intend to solve or the questions that we pose about
certain aspects of the model. Each of the other chapters is based on a paper
published already, or on a manuscript. Here is the list of these six papers and
two manuscripts.

Splicing
(1) The power of H systems: does representation matter? [HV98]

(2) A characterization of non-iterated splicing with regular rules [DHV01]
(3) Upper bounds for restricted splicing [HV02]

Sticker systems

(4) Fair sticker languages [HV00]
(*) A hierarchy of sticker families (manuscript, with H.J. Hoogeboom)

Forbidding and enforcing

(5) Forbidding and enforcing [EHT00]

(¢) Properties of forbidding sets and enforcing sets (manuscript, with
A. Ehrenfeucht, H.J. Hoogeboom and G. Rozenberg)

(6) Sequences of languages in forbidding-enforcing families [EH01]

We describe now in more detail the correspondence between the chapters of
this thesis and the papers and manuscripts listed above.

Chapter 4 is essentially paper (1); we have only changed the layout a little
and added some explanations.

11



12 PREFACE

Chapters 5 and 6 result from a continuation of the research presented in
paper (2). In Chapter 5 we present a characterization of the family of unre-
stricted non-iterated splicing languages generated by a linear initial language
and a regular set of rules. Extending this result, we prove that under certain
conditions regular rule sets may be replaced by finite rule sets, for unrestricted
non-iterated splicing and for several cases of restricted non-iterated splicing. In
Chapter 6 we determine upper bounds for the restricted splicing families that
we discuss. This chapter is based on paper (3).

Chapter 8 contains the part of paper (4) where we answered the ques-
tion whether fair sticker languages are context-free languages (or even linear
languages) by proving that each fair sticker language is accepted by a blind
one-counter automaton and showed that these blind one-counter languages con-
stitute a rather close upper bound for the fair sticker languages.

In paper (4) we also proved a normal form for sticker systems: without
changing the sticker language it is always possible to replace the complemen-
tarity relation by the identity. This normal form appears here in Chapter 7.

In Chapter 9, which corresponds to manuscript (*), we show that every
(fair) sticker language can be generated by a sticker system that can do only
primitive computations, provided that one is allowed to use a coding. Moreover,
we compare the unrestricted sticker languages with the restricted versions of
sticker languages that we consider.

Paper (5) is an overview of research done in the new field of forbidding-
enforcing systems. It contains the results from the initial paper in that field
([ER]) as well as some results that we obtained when searching for standard
formal language properties of the newly defined systems (like normal forms,
determinism versus non-determinism and such), and when investigating the
topological aspects of forbidding-enforcing families. The former research was
described in manuscript (), the latter in paper (6). In Chapters 10, 11 and 12
we essentially give a considerably extended version of paper (5), where Chap-
ter 11 corresponds to (¢) and Chapter 12 to (6).

During the years that I was a Ph.D. student, many people showed their
sincere interest in my work, the progress I made with it and my personal well-
being. Of all those people I especially wish to mention the entire Theoretical
Computer Science group, which I found a very warm and friendly environ-
ment to work in (GR, Joost, Jetty, Hendrik Jan, Tjalling, Jurriaan, Maurice,
Rudy, Sebastian, Pier and Marloes), as well as Henk, Frans, Tero, Walter, Jean-
nette, Siegfried, my family, especially Jurriaan, papa, mama, Kirsten, Godelief,
Jeroen, tante Jo, oom Albert, Hans, Leida, Arjan, Ernst, and my landlady,
mevrouw Vries.

I also gratefully acknowledge support by LIACS and TUCS, that made it
possible for Jurriaan and me to work in Turku, Finland, during the rainy month
of August 1998.



Chapter 1

Introduction

DNA molecules and various operations on them can be conveniently expressed
as strings and operations on strings. Hence, many models of DNA computation
have been formulated within formal language theory. We consider here three
formal language based models of molecular processes. Two of them, splicing
systems and sticker systems, were defined during the last 15 years, while the
third one is more recent: forbidding-enforcing systems.

We will first describe the structure of DNA, as well as the properties of
DNA that have motivated splicing and sticker systems. Then the three models
considered in this thesis are (informally) introduced.

DNA

Our description of DNA (deozyribonucleic acid) molecules and their manipu-
lation is quite simplified, but adequate for this thesis. A DNA molecule (see,
e.g., [PRS98]) is a chain of nucleotides. Each nucleotide consists of a sugar,
a phosphate group and a base. Nucleotides can differ from each other only
in their bases, which come in four sorts: adenine, thymine, cytosine and gua-
nine, abbreviated by a, t, c and g, respectively. The sugar has five carbon
atoms, numbered 1’ through 5, which serve as ‘attachment points’ (referred to
as ‘ends’): the phosphate group is attached to the 5’ end and the base to the 1
end. Two nucleotides can link through a bond between the (phosphate group
at the) 5" end of one nucleotide and the 3’ end of the other. In this way, an
alternating sequence of sugars and phosphate groups forms the backbone of a
DNA molecule, and this backbone has an orientation: on one end there is a free
3’ end and on the other end there is a free 5’ end. A chain of nucleotides formed
in this way is called a single stranded DNA molecule or simply a strand, and
is identified by the order in which the bases appear on the backbone (usually
read from the 5 end to the 3’ end). Schematically such a single strand of DNA
may be represented as follows.

13



14 INTRODUCTION

An important feature of DNA is the so-called Watson-Crick complementarity,
which is the phenomenon that the four bases actually come in two pairs: a pairs
with t, and ¢ pairs with g, meaning that a and t can form a (weak) hydrogen
bond, and the same holds for c and g; moreover no other pairs can form a hy-
drogen bond. This Watson-Crick complementarity allows two single strands to
form a double stranded DNA molecule: the two strands bind together (‘anneal’)
through hydrogen bonds between complementary bases positioned opposite to
each other in the two strands. For example, if in a solution containing the
single stranded molecule aatgcgc depicted above there is also a single stranded
molecule cttgegea (also read from the 5’ end to the 3’ end), they may together
form the partially double stranded molecule shown below.
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This figure illustrates also the second necessary condition for two single strands
to form a double strand: the orientation of one strand is opposite to the orienta-
tion of the other. The single stranded pieces of DNA at the ends of the partially
double stranded molecule are referred to as sticky ends, because they allow
DNA molecules to stick together to form longer molecules. Thus, e.g., if there
is another molecule in the solution beginning with aag or tt (at its 5’ end),
this molecule can anneal with the structure above. This annealing of single
strands to form double strands, or of (partially) double strands to form larger
(partially) double strands is spontaneous, and is referred to as self-assembly.

Usually, in the illustrations the backbones are not depicted, and by con-
vention the upper strand is written in the 5 to 3’ direction (hence the lower
strand in the 3’ to 5" direction).

Double stranded DNA molecules can be cut in two partially double stranded
pieces by restriction enzymes, which look for a specific recognition site and then
cut the molecule somewhere within (or sometimes outside) this recognition site.
We show this for the three restriction enzymes Tagl, SciNI and Hhal, using
three sample molecules. The dashed boxes denote the recognition sites, and
the small black triangles denote the cutting points.
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Since Taql and ScilNI leave exactly the same sticky ends — i.e., both the base se-
quences and the orientations of the overhangs are the same — the two molecules
above that are cut by these two enzymes can recombine into two new molecules
(or the two original molecules can be restored):
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Sticky ends produced by Hhal, however, have a different orientation, hence
molecules that are created through cleavage by Hhal cannot be combined in
this way with molecules resulting from cutting by Tugl or SciNI.

The cutting by restriction enzymes and subsequent recombination into old
and new molecules described above is also called splicing.

Abstracting from their biochemical properties, single DNA strands can be
seen as strings over the alphabet {a,c,g,t}. Fully double stranded molecules
can then be represented by two strings of which one is written on top of the
other, as we did above, but in our notation we can also leave one of the strands
out, because the other one can be deduced using the Watson-Crick complemen-
tarity. Since in this way molecules can be represented as strings, operations on
molecules, such as self-assembly or splicing, can be described through opera-
tions on strings — this brings us into the framework of formal language theory.

Splicing systems

Splicing systems are designed to model the cutting and recombination of DNA
molecules in the presence of restriction enzymes ([Hea87]). Originally, splicing
systems were defined in such a way that the natural process of cutting and
recombination was described as accurately as possible: a finite set of initial
strings representing the initial molecules could be spliced according to two
finite sets of splicing rules, in which each rule represented the recognition site
and cutting points of one restriction enzyme as a 3-tuple (u,x,v), where uzv
is the recognition site and z is the overhang left after cutting (hence Tagql
is represented as (t,cg,a)). One of these two sets consisted of splicing rules
that leave a 5’ overhang after cutting, the other one of splicing rules leaving
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a 3’ overhang. Two initial strings v/uzvv’ and y'ywzz' could be spliced only
by using two rules (u,z,v) and (y,w, z) from the same set that left the same
overhang, i.e., x = w. The resulting strings, apart from v'uzvv’ and y'yzzz'
themselves, would then be v'uzzz' and y'yzvv’.

Later, two rules (u,z,v) and (y, x, z) representing compatible enzymes were
combined into a 4-tuple (uz,v,yx,z) or even into a string uz#vSyx#z (both
also called a splicing rule). Here the $ symbol separates the recognition sites
and the # symbols indicate the cutting points. As the result of splicing v’ uzvv’
and y'yxz2' using ur#vSyr#z only vw'uxzz’ was considered, because one could
easily obtain also y'yzvv' by adding the symmetric rule yx#z8uz#v.

Finally, several aspects in the definition of splicing systems were generalised:
a splicing rule u #us$us#uys was no longer required to represent two enzymes
(let alone two compatible enzymes), the alphabet was no longer restricted to
{a,t,c, g}, it was no longer required that for each rule u;#uo$usz#u4 also the
symmetric rule ug#us$u; #us be present, and the set of initial strings and the
set of rules no longer had to be finite. All these abstractions lead to a model
of splicing based on formal language theory, in which the effect of splicing sets
of initial strings using sets of splicing rules can be investigated. In particular,
the power of the splicing operation is studied as a function of the complexity
of the set of initial strings and the set of rules.

Sticker systems

Adleman ([Adl94]) uses the Watson-Crick complementarity to propose a bio-
chemical implementation of an algorithm to solve the Hamiltonian Path Prob-
lem: the question whether a given graph contains a path going through each
of its nodes exactly once (starting from a designated initial node, and ending
in a designated terminal node). In Adleman’s scheme nodes are represented
by short DNA strands, and edges are designed to match with the second half of
their source node and the first half of their target node. We illustrate this for
a very small example.

1——m 1: atcg 1—2: gcga
2: ctag 1 —3: gceg

2 —=3: tccg

3: geta 3 —4: atac

——mm 4 4: tgac 4 —2: tgga

Now, when the strands representing the nodes and edges are placed in a solu-
tion, paths in the graph are formed by self-assembly.
1 3 4 2
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After that the Hamiltonian paths may be detected in the solution by a rather
involved biochemical selection process.

Sticker systems are introduced as a model for the self-assembly phase of
Adleman’s experiment ([KP198]). A sticker system specifies finite sets of upper
and lower ‘stickers’ (single stranded molecules), and a finite set of axioms (used
as a seed for the process joining upper and lower strands). The complementarity
relation is modelled by a binary relation on the alphabet. Roughly speaking,
the language generated by the system consists of all strings formed by upper
stickers for which an exactly matching (i.e., complementary) sequence of lower
stickers can be found.

These sticker systems are generalised to sticker systems that have (partially)
double stranded stickers, or axioms to which both to the right and to the left
stickers can be attached, etcetera. Furthermore, motivated by the wish to find a
model that is computationally complete, in addition to the unrestricted compu-
tations described above, restricted computations are considered: for example,
computations that are only valid if the number of upper stickers used equals
the number of lower stickers used.

The theory of sticker systems investigates the relationships between differ-
ent types of sticker systems as well as their relationship to various types of
grammars and automata.

Several other models of the use of self-assembly for computations are con-
sidered in the literature, see, e.g., [WYS98] and [RW98].

Forbidding-enforcing systems

In a completely different kind of molecular (not necessarily DNA) model bound-
ary conditions are used to describe what can happen in a molecular system.
We consider here two types of boundary conditions: forbidding and enforcing.
Forbidding conditions say that if a certain group of components (i.e., parts of
molecules) is present in the system, then the system will lose its functionality
(e.g., an organism will die, or a molecular computation will go ‘the wrong way’)
— hence such a combination of components is forbidden. Enforcing conditions
say that if a certain group of molecules is present in the system, then (as the re-
sult of a molecular reaction) some other molecules will eventually be present in
the system. Hence the evolution of a system described by forbidding conditions
F and enforcing conditions £ will proceed according to the reactions described
by £ but restricted in such a way that none of the forbidden combinations from
F will be created.

Such forbidding-enforcing systems, fe systems for short, are more ‘tolerant’
in describing results of (molecular) computations than the standard grammat-
ical models: one fe system describes a whole family of outcomes all of which
obey the forbidding and enforcing constraints of the system. Thus in the case
that we model the molecules by strings (as we do in this thesis), one fe system
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specifies a possibly infinite family of languages. A language belongs to this
family if and only if it is consistent with the forbidding conditions and satisfies
the enforcing conditions — nothing else is required from the language. Intu-
itively speaking, fe systems follow the rule “everything that is not forbidden
is allowed”, while standard formal language theory (grammars and automata)
follows the dual rule “everything that is not allowed is forbidden”.

Since the forbidding and enforcing conditions can be expressed by strings
and languages, we get again a formal language theoretic model (albeit nonstan-
dard).



Chapter 2

Preliminaries

In order to fix our notation, we recall some well-known formal language theory
concepts that we need throughout this thesis. More details can be found in,
e.g., [HU79], [RSI7].

2.1 Sets, words and languages

The set of positive natural numbers is denoted by N, and the set of integers by
Z. We write Z*, for some k > 1, for the set {(vy,...,v}) | v1,..., v € Z}, and
similarly A* for an arbitrary set A. Elements of ZF, for any k > 1, are also
written as 7, and the vector consisting of k 0’s is written as 0. We denote the
largest element of a finite subset A of Z by max A.

For two sets A and B, A C B denotes the inclusion of A in B, and A C B
denotes the proper inclusion of A in B (i.e., additionally, A # B). By A— B we
denote the set consisting of all elements of A that are not elements of B. We
use P(A) to denote the set consisting of all subsets of A, called the power set
of A. We denote the empty set by &, and the cardinality of a set A by #(A).
We often notationally identify a singleton set with its element.

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet ¥ is a finite sequence of letters from 3. We denote the empty word
by A, the length of a word w by |w|, and the number of occurrences of a symbol
a in w by #4(w). The concatenation of two words z and y is denoted by z - y
or simply zy.

A language over X is a (possibly infinite) set of words over ¥. The language
consisting of all words over X is denoted by ¥*, and T denotes the language
¥* — {A}. A set of languages containing at least one language not equal to &
or {\} is also called a family of languages. For a language K and an integer
n>0, K|l ={weK||w <n},and K|., ={w € K | Jw| > n}. A sequence
of languages K1, Ks, ... for which K; C Ky C ... is called ascending.

The set of prefixes of a given word w € ¥* is defined as Pref (w) = {u €

19



20 PRELIMINARIES

Y | w=uv for av € ¥*}, and the set of suffixes as Suf(w) = {v € ¥* | w = wv
for a u € ¥*}.

The following notions are frequently used in Part III. A word x € ¥* is a
subword of a word y € ¥*, denoted x sub y, if y = uzv for some u,v € X*.
We say that z is a subword of a language K if x sub y for some y € K. The
set of subwords of z is denoted by sub (z), and the set of subwords of K by
sub (K), hence sub (K) = [J, g sub (z). Note that, for two languages K and L,
K Csub(L) if and only if sub (K) C sub (L). A language K is called subword
free if, for all x,y € K, x sub y implies z = y.

For a language K we define sub, .. (K), the set of maximal subwords of K,
to be {z € K | there isno y € K with  # y and = sub y}. Obviously, for every
subword free language K we have K = sub_ . (K). Furthermore, note that for
infinite K it may be that sub . (K) conveys little information concerning K,
since for instance sub, .. (a*) = @.

——=max

From the definitions it is clear that sub, . (K) C K C sub(K) for any
language K. Moreover, for a finite or subword free language K it holds that
sub (sub, ,.(K)) = sub (K). This directly implies the following property: if
K and L are finite or subword free languages, then sub (K) = sub (L) if and
only if sub_ .. (K) = sub_ .. (L). Furthermore, this property and the fact that

——maXx

for subword free K it holds that K = sub,,. (K) together prove the following

Z——max
lemma.

Lemma 2.1 Let K and L be subword free languages.
Then sub (K) = sub (L) if and only if K = L.

2.2 The Chomsky hierarchy

The family of all finite languages is denoted by FIN.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, %, 0, qo, F),
where () is a finite set of states, X is the input alphabet, § : Q X ¥ — (@ is the
transition function, qq is the initial state and F' C @) is the set of final states.

We extend 0 to a mapping from @ x ¥* to @ by defining 6(p, A) = p and
d(p,aw) = 6(0(p,a),w), for p € Q, a € ¥ and w € ¥*.

A triple (w,p,z) € ¥* x @ x ¥*, called an instantaneous description, de-
scribes the current situation of the automaton: wz is the input word, of which
w is already read and z still has to be read, and p is the current state. When
the automaton has a transition (p, a, g), i.e., 6(p,a) = ¢, then an instantaneous
description (w, p,az) can change into (wa, ¢, z), denoted (w,p, az) - (wa, q, z).
The reflexive and transitive closure of I is denoted F*. The language accepted
by the finite automaton A is defined as L(A) = {w € ¥* | (A, g0, w) F* (w, f, A)
for a final state f € F'}, and is called a regular language.

We use the notation REG for the family of regular languages.
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Useful variants of the DFA are: the non-deterministic finite automaton, that
has a transition relation rather than a transition function, i.e., 6 C Q x 3 X @;
the finite automaton that may have A-transitions (i.e., transitions of the form
(p, A, q)); and the lazy finite automaton, that allows transitions of the form
(p,w,q), where w € ¥*. All these variants are known to be equivalent to the
DFA, where two language-generating or language-accepting devices are called
equivalent if they define the same language.

A finite automaton is usually represented graphically: the states are in-
dicated by circles with the name of the state written in it, and a transition
(p,a,q) is represented by an arrow from the circle containing p to the circle
containing ¢, labelled by a. The initial state is indicated with a ‘=’ symbol
and the final states by two concentric circles.

A context-free grammar (CFG) is a 4-tuple G = (N, T, P, S), where N is a
finite set of non-terminals, 7" is a finite set of terminals, P C N x (N UT)*
is a finite set of productions and S € N is the start symbol. A production
(A,a) with A € N and a € (N UT)* is written as A — a. If a equals A, the
production is called a A-production.

A string x is said to derive a string y in G, denoted x = y (or z = y if G
is clear from the context), if x = wAz and y = waz, for some w,z € (N UT)*,
and there is a production A — « in P. The reflexive and transitive closure of
= is denoted =*. A string z € (N UT)* with S =* z is called a sentential
form of G. The context-free language generated by G is defined as L(G) =
{weT*|S="w}

The family of all context-free languages is denoted by CF.

A linear context-free grammar is a CFG in which each production has at
most one non-terminal in its right-hand side, i.e., every production is of the
form X — wYz or X — w, with X,;Y € N and w,z € T*. The language
generated by such a grammar is called a linear (context-free) language. We use
LIN to denote the family of all linear languages.

A cFG is called regular (or right-linear) if each production is of the form
X — wY or X — w, with X and Y non-terminals and w € T%. It is called
regular because its derivations correspond to paths from the initial to a final
state in a lazy finite automaton. Indeed, the regular CFG’s generate exactly the
regular languages.

The machine counterpart of the context-free grammar is the pushdown au-
tomaton (PDA). A PDA is essentially a finite automaton with an external storage
device: a stack. Depending on the current state and input symbol and on the
top symbol on the stack, the PDA moves to another state and replaces the top
stack symbol by a finite number of stack symbols.

A linear bounded automaton (LBA) is an extension of a finite automaton,
in the sense that it may move back and forth on its input and even overwrite
(input) symbols with other symbols. It is called linear bounded because it is
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not allowed to use more of the input tape than the part that contains the input
string. For that purpose the start and end of the input string are marked with
two (different) special symbols.

Formally, an LBA is an 8-tuple A = (Q,X%,T',6,<,>,qo, F), where @ is
the finite set of states, ¥ C I' is the input alphabet, I' is the tape alphabet,
<, > € I', with < # >, are the left and right endmarkers, respectively, gy € Q)
is the initial state, and F' C @ is the set of final states. The transition relation
d is a finite subset of @ X I' x @ x I' x {L, R, N}. An element (p,a,q,b,r) of §
is interpreted as follows: when A is in state p and reads the symbol @ it may
change its state to ¢, overwrite a with b and go to the previous (if r = L) or
the next (if r = R) symbol on the tape, or stay at the same position (if r = N).
Furthermore, the following requirements must be satisfied: ¢ = < if and only
if b=<;if a = < then r # L; a = > if and only if b = >; if @ = > then r # R.

The language accepted by an LBA consists of all input words for which, when
starting in ¢, the LBA can reach a final state. It is called a context-sensitive
language, and the family of context-sensitive languages is denoted by CS.

An LBA can simulate the productions of a CFG on a ‘second track’ of its input
tape, thereby providing a proof that CF C CS. This second track is ‘created’
by using symbols consisting of two components, of which the first is the old
symbol and the second is the symbol on the corresponding position of the
second track. The LBA writes the start symbol of the CFG under consideration
on its second track and then repeatedly chooses one of the non-terminals on
the second track and rewrites it according to an applicable production, while
shifting the symbols on the second track if necessary. Such a simulation of
a derivation of a word w by a CFG can be done within the part of the input
tape that contains w, because if a CFG does not have A-productions, then the
sentential forms in the derivation of w by this CFG never need to be longer
than w, and for every CFG with A-productions an equivalent (modulo \) CFG
without A-productions can be constructed.

At the top of the automata hierarchy we have the Turing machine (TM). It
is a generalisation of the LBA in the sense that it is allowed to use an infinitely
long input tape to carry out its computations, instead of only the part of the
tape where the input word is.

Formally, a T™ is a construct M = (Q,3,T,0,qo, B, F'), where Q,%, T, qo
and F' are as for the LBA, QNI' = &, § isa subset of QxI'xQxI'x{L, R, N}, and
B € T is the blank symbol, representing an empty cell on the tape. The current
situation on the tape of a T™ is described by an instantaneous description zqy
with z,y € I'* and ¢ € (). Here z contains the contents of the tape immediately
to the left of the head, starting with the leftmost symbol that is not B, the head
is on the first symbol of y, and y contains everything to the right of the head,
up to and including the rightmost symbol that is not a blank. The language
accepted by a T™ is defined similar to the language accepted by an LBA, and is
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called a recursively enumerable language. The family of recursively enumerable
languages is denoted by RE.

The families FIN, REG, LIN, CF, CS and RE are said to form the Chomsky
hierarchy. It is indeed a hierarchy because FIN C REG C LIN ¢ CF ¢ CS C RE.

2.3 Operations on languages

A homomorphism is a function from A to ¥*, for alphabets A and 3, assigning
to each symbol in A a string over . It is called A-free if it maps symbols
in A to non-empty strings over . A homomorphism h can be extended to a
function from A* to X* as follows: h(A) = A, and h(az) = h(a)h(zx), for a € A
and z € A*.

A letter to letter homomorphism is called a coding. For a language family
F, we use COD(F) to denote the family of codings of languages in F, where
the coding h of a language L is defined as h(L) = {h(x) | z € L}.

For a language L and a string w we define the left-quotient of L by w as the
set { | wr € L }. The (right-)quotient of two languages L; and Lo, denoted
Li/Ly, is defined as the set {z | there exists y in Ly such that zy is in L; }.

The shuffle of a language K C A* with a symbol ¢ is defined as {ucv | uv €
K for some u,v € A*}, for an alphabet A. Substitution with regular sets is
defined by a mapping from A into regular subsets of %*, for alphabets A and
3.

A finite-state transducer (FST) v = (Q, X, A, §, qo, F) is a non-deterministic
finite-state automaton with additional output, i.e., Q, X, go and F' are as defined
for finite automata, A is the output alphabet, and ¢ is a finite set of transitions
of the form (p,a,w,q) € Q X (X U {A}) x A* x ). Using such a transition,
the machine may change from state p into state ¢, while reading a on its input
and writing the string w to its output. In the literature such a transducer is
also called ‘a-transducer’ or ‘rational transducer’. The FST defines a relation in
3* x A¥, called an FST mapping or a finite-state transduction. If the transition
relation of the FST is in @ x (X U {\}) x AT x @, then the corresponding FST
mapping is called non-erasing.

A finite-state transducer that is not allowed to read A (and at the same time
write a (non-empty) string to the output), i.e., an FST with transition relation
dCQxXxA*xQ, is called a generalised sequential machine (GSM).

Note that, for instance, homomorphisms, intersection with regular sets, and
quotient with symbols or regular sets are special cases of the GSM mapping.

The effect of an FST mapping can also be achieved by the combination of
an (arbitrary) inverse homomorphism, intersection with a regular set and a
homomorphism. In the case of a non-erasing FST mapping the homomorphism
may be assumed to be A-free. The inverse homomorphism is used to ‘guess’ a
transition (p, a,w, q) of the FST for each symbol @ in the input, the intersection
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with a regular set guarantees that the sequence of transitions corresponding
to the input word obtained in this way forms indeed a path from the initial
state to a final state of the FST, and the homomorphism then translates each
transition (p,a,w,q) in this path to w, thus forming the output.

A family of languages F is said to be closed under a given n-ary operation
on languages if whenever this operation is applied to n languages from F,
the result is again a language in F. We summarize some well-known closure
properties of the families in the Chomsky hierarchy in Table 2.1. Here we
use ‘+’ to denote closure and ‘-’ to denote non-closure of a family under an
operation.

[ FINREG [ LIN] CF [ CS | RE |

concatenation with symbols + + + |+ + |+
concatenation + + — + |+ 1 =+
non-erasing FST mapping - + + |+ | + | +
FST mapping - + | + |+ | -]+
non-erasing GSM mapping + + + |+ + ] +
GSM mapping + | + |+ | +]| - |+
A-free homomorphism + + + |+ |+ | +
homomorphism + + + | =] =] +
inverse homomorphism - + + |+ |+ | +
intersection with regular sets + + + + | + +
quotient with symbols + + + |+ |+ ]+
shuffle with symbols + + + |+ |+ | +
substitution with regular sets || — + + |+ - | +
union + |+ | F ]+ ]+

Table 2.1: Some closure properties of the Chomsky families

A family of languages that is closed under A-free homomorphisms, inverse ho-
momorphisms and intersection with regular languages is also called a trio;
equivalently, a trio is closed under non-erasing FST mappings. When the A-
free homomorphisms may be replaced by arbitrary homomorphisms, the fam-
ily is called a full trio. A trio is also sometimes called a faithful rational cone,
while a full trio is called a rational cone. The Chomsky families REG, LIN,
CF and RE are full trios, and CS is a trio. A (full) trio that is additionally
closed under union is called a (full) semi-AFL, where AFL is an acronym for Ab-
stract Family of Languages. The theory of AFL’s and AFA’s (Abstract Families
of Automata) concerns itself with common properties of families of languages
(see, e.g., [GG69, Gin75]), and the relation between properties of automata and
properties of the families of languages they define.
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2.4 Blind one-counter automata

The following type of automaton will be used in Part II.

A blind one-counter automaton (BCA) is a finite-state device equipped with
an external memory (the ‘counter’) that contains an integer value which may be
incremented and decremented by the automaton. It is called blind because the
automaton cannot test its counter value during the computation, i.e., it may
not check whether its counter value is zero and act according to the outcome
of this test.

Formally, a BCA is a 5-tuple B = (Q, %, 0, qo, F'), where Q, X, qp and F
are as for finite automata, and 6 C Q x ¥ x {—1,0,1} x @ is a finite set of
instructions (or transitions).

An instantaneous description of B is an element of @) x ¥* x Z. For two
instantaneous descriptions (p,ax,i) and (q,z,j), we write (p,ax,i) F (q,z,7)
if (p,a,e,q) € § and j = i+ ¢e. By F* we denote the reflexive and transitive
closure of .

The (blind one-counter) language accepted by B consists of all strings for
which the automaton in a computation on this string ends in a final state and
at the same time has counter value zero. It is defined as L(B) = {x € £* |
(qo,z,0) F* (f,\,0) for some f € F'}. The family of all languages accepted by
blind one-counter automata (BCA-languages) is called 1BCA.

The blind one-counter automaton can be ‘implemented’ on a more com-
monly known device: the stack of a pushdown automaton may act as a counter.
Consequently 1BCA C CF. Since the context-free language {w € {a,b}* |
#o(w) = #p(w) and #4(x) > #p(z) for every prefix z of w} is not in 1BCA
(see [GreT8, Theorem 3]), we even have 1BCA C CF.

In contrast with the definition of BCA given in [Gre78], we do not allow
A-instructions, i.e., instructions of the form (p, A, e,q). However, these two
definitions are equivalent, which can be explained as follows.

From AFA/AFL theory it is known that if there is a language L that describes
the ‘acceptance behaviour’ of a certain type of automaton that has an additional
storage, then the family of languages generated by this kind of automaton
without A-instructions equals the faithful rational cone generated by L, while
the family of languages generated by this kind of automaton with A-instructions
equals the rational cone generated by L. For BCA’s it is clear that the possible
successful instruction sequences are naturally modelled by the ‘two-sided Dyck
language’ D} = {w € {a,b}* | #4(w) = #p(w)}, where a and b represent
addition of +1 and —1, respectively. Hence 1BCA equals C/(D}), the faithful
rational cone generated by D7, and the family of languages generated by BCA’s
that can have A-instructions is equal to C(D7), the rational cone generated
by Dj. In [Lat79, Proposition II.11] it is proved (as a special case of a more
general result) that C/(D}) = C(D?). Hence the BCA’s with A-instructions are
equivalent to the BCA’s without A-instructions.
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We give now a more detailed explanation of the equivalence of 1BCA and
the faithful rational cone generated by Dj (i.e., we explain the idea behind
the AFA/AFL result used above). A BCA B can be seen as a finite-state device
v mapping input strings to strings over {a,b} according to the instructions
executed during the computation. The input is accepted precisely when the
output belongs to Dj. Hence for each transition (p,c,€,q) of B, v has a tran-
sition (p,c,a,q), where « = aife = +1, a =bife=—1and a = XA if e = 0.
Furthermore, ¢ # X since B does not have A-transitions, hence 7y is a GSM (an
arbitrary one, since @ may be \) with an extra acceptance criterium. Clearly
z € L(B) if and only if y(x) N D} # @.

Now let a finite-state device 7 be constructed from «y by giving 7 a transition
(p, a, ¢, q) for each transition (p,c,«,q) of v. Then 7 is a non-erasing finite-
state transducer, because « may be A but ¢ may not. Moreover, since the only
difference between v and 7 is that the roles of input and output have been
interchanged in every transition (the structure of the underlying automaton is
the same), it holds that y(z) N D} # @ if and only if x € 7(D7). Consequently
1BCA C {7(D7) | 7 is a non-erasing finite-state transducer}. Conversely, every
non-erasing FST with input alphabet {a, b} can be converted into a BCA without
A-transitions, following a procedure similar to the one described above. Hence
IBCA = {7(D7) | 7 is a non-erasing FST}, and according to Corollary 1 to
Theorem 3.2.1 from [GinT75], the latter family equals the smallest trio containing

1, which is also called the faithful rational cone generated by Dj. In other
words, the family 1BCA is equal to the smallest language family that contains
D7 and is closed under A-free homomorphisms, inverse homomorphisms and
intersection with regular languages.

The equivalence of the family of languages generated by BCA’s that can have
A-instructions and C(D7), the rational cone generated by Dj, can be shown in
a similar way (but now 7 and 7 are arbitrary FST’s instead of a GSM and a non-
erasing FST, respectively, and the A-free homomorphisms above are replaced by
arbitrary homomorphisms).

From the discussion above we conclude that 1BCA is a principal rational
cone (i.e., a rational cone generated by a single language), and in particular
that 1BCA is closed under codings (being a special case of a homomorphism),
left-quotient with strings (which can be done by a GsM), and union (using a
construction similar to the one proving closure of REG under union). Because
of the latter property 1BCA is also a full principal semi-AFL.

Blind one-counter automata were also studied as ‘integer weighted finite
automata’ in [HH99] and as ‘additive regular valence grammars (over Z) in
[Pau80] (see also [FS97]). In these devices the instructions (productions) are
assigned an integer value, and one considers only computations (derivations)
for which these values add to 0.

In the next section we consider a generalisation of the BCA, the context-free
valence grammar over ZF, that we need in Chapter 6. Both these concepts,
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BCA’s and valence grammars, are also investigated in [Hoo02].

2.5 Context-free valence grammars

A context-free valence grammar over Z*, for some k > 0, is a context-free gram-
mar in which each production has a vector from Z¥ associated to it. Derivations
of context-free valence grammars are defined exactly as for normal context-free
grammars, but now a derivation is only valid if the (componentwise) sum of
the valences of the used productions is 0.

Formally, a context-free valence grammar (over Z*) is a 4-tuple G = (N, T, R,
S) with N,T and S as for a normal CFG, and R C N x (N UT)* x Z¥. An
element (A, «,7) of R is written as (A — «a,7). A — « is the underlying
production and 7 is the valence of the production.

The context-free valence language over Z* generated by G is defined as
L(G) = {w € T* | (5,0) =* (w,0)}, where (wAz,¥) = (waz,§) if and only if
there is a production A — « with valence 7 in R and §= 7 + 7.

For each k£ > 0, we denote the family of context-free valence languages over
ZF by CF(ZF). We will sometimes abbreviate the term ‘context-free valence
grammar (language) over Z* to simply ‘valence grammar (language)’.

As an aside, note that blind counter automata with k counters, for k& > 0,
can also be seen as regular valence grammars over ZF.

Clearly, a context-free valence grammar over Z° is a normal context-free
grammar, i.e., CF = CF(Z%). Moreover, we have CF(Z¥) C CF(Z**!) for each
k > 0.

Similar to the case of LBA’s simulating derivations of CFG’s, an LBA can
simulate the derivations of a given context-free valence grammar over ZF, for
some k > 0. For that we use the fact that for every valence grammar an
equivalent (modulo A) valence grammar in Chomsky normal form can be con-
structed, which means that each production in the underlying CFG is of the
form A — BC or A — a, for A, B,C non-terminals and a a terminal symbol
(see [FS00, Theorem 5.1]; actually, in that theorem there are also restrictions
on the valences, but those are not important to us here). In particular, a CFG in
Chomsky normal form has neither A-productions nor unit productions (which
are of the form A — B). Furthermore, we need a means to keep track of the
values of the counters. The latter can be done by using an extra track of the in-
put tape of the LBA for each counter, and by observing that, for a given valence
grammar, there is a maximum amount m; that can be added to (or subtracted
from) the 7*" counter (0 < i < k) during the application of a production, hence
for an input word of length n the value of the i'! counter becomes at most
(2n—1)m,; (here we again use the fact that the valence grammar is in Chomsky
normal form). Thus, if necessary, the LBA can count up to 2m; in each cell of
the extra track corresponding to the i*! counter. Hence for each k > 0, it holds
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that CF(Z*) C CS.

In the same way that context-free grammars are extended to context-free
valence grammars over ZF, for some k > 0, we can extend finite-state trans-
ducers to walence transducers over ZF (called Z*-transducers for short; the
mapping defined by such a transducer is called a Z*-transduction). Hence Z*-
transducers are finite-state transducers in which each transition has a valence,
and a computation of such a ZF-transducer is valid if it follows a path from the
initial state to a final state and the valences along this path add to 0.

The application of a Z‘transduction to a valence language over ZF, for
some k,¢ > 0, yields a valence language over Z**¢. This can be proved as
follows (see also [FS00, Theorem 4.18]), using a construction that is similar to
the ‘triple construction’ that defines a CFG generating the intersection of the
languages of a given context-free grammar and a given finite automaton; the
name ‘triple construction’ comes from the fact that the non-terminals of the
new CFG are of the form [p,z,¢q], where p and ¢ are states of the automaton
and z is a non-terminal or a terminal of the original CFG.

Let G = (N, T, R, S) be a valence grammar over Z*, and let 7 = (Q, 2, A, 6,
qo, F) be a valence transducer over Z‘. We describe now how to construct the
desired valence grammar H over Z*+¢. We may assume that G is in Chomsky
normal form. The structure of a derivation tree of H is almost the same as
that of the corresponding derivation tree of G, and on the way down from the
root to the leaves a path through the automaton 7 is guessed. This happens as
follows: the start symbol S’ of H makes sure that the path starts in the initial
and ends in a final state, through the productions (S — [qo, S, f], 0), for each
f € F. Then ([p,X,q] = [p,Y,r][r,Z,q] , (v1,...,0%,0,...,0) ), where ( X —
YZ, (v1,...,v) ) € R, recursively refines the guessed path, until ( [p, X, q] —
p,a,q], (v1,...,0%,0,...,0)), for a production ( X — a, (v1,...,v;)) € R,
terminates the derivation of G. Now ( [p,a,q] — w, (0,...,0,r1,...,7¢) ), for
a transition (p,a,w,q) with valence (r1,...,7,) of 7, guarantees that indeed a
path through 7 has been generated and performs the transduction defined by
T.

Note that the additions to the £ counters of 7 may happen in a different
order than when the transduction defined by 7 is applied directly, because this
order is now dependent on the derivation of H. Since addition is commutative,
this is not a problem.
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Chapter 3

Definitions, examples and
research topics

Analogous to the splicing of two molecules with the help of restriction enzymes
to produce another molecule (see Chapter 1), two strings z1uv1y; and xougveys
can be spliced according to a splicing rule (uy,v1,u2,v2) to give the string
T1U1V2Y2:

(L1 w v Y

L

"Ty uz V2 Y2

Definition 3.1 A splicing rule over an alphabet V is an element of (V*)*. For
such a rule r = (u1,v1,u2,v9) and strings x,y,z € V* we write

(z,y) Frz it z=z1u101y1, Yy = z2uzveys and

Z = T1u1v2yo, for some z1,y1,To,ys € V.

The string z is said to be obtained by splicing the strings x and y using the
rule r; x is called the first term of the splicing, and y the second term.

A splicing system consists of an initial language, modelling the contents
of a tube of DNA, and a set of rules, modelling the set of available restriction
enzymes.

Definition 3.2 A splicing system (or H system) is a triple h = (V, L, R) where

V is an alphabet, L C V* is the initial language and R C (V*)* is a set of
splicing rules, the splicing relation. O

31
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In the literature, splicing rules are usually represented as strings rather than
4-tuples: a splicing rule r = (uq,v1,us2,v2) is given as the string Z(r) =
u1Fv1Sus#ve (# and § are special symbols not in V), i.e., Z is a mapping
from (V*)* to V*#V*$V*#V*, that gives a string representation of each splic-
ing rule. We extend Z in the natural way to a mapping from sets of splicing
rules to languages. The name of this mapping is suggested by a more graphical
notation for the splicing rule 7, that is used in [PRS96a]:

upr | N
Uz | V2

and by the way the diagram is then read to get the uj#v;$us# vy notation.
These three ways to represent splicing rules are all useful: the representation by
4-tuples is ‘safe’ whereas the string representation may cause problems, as we
explain in Chapter 4; the string representation, however, enables us to measure
the complexity of a set of rules by determining its position in the Chomsky
hierarchy; and the representation by diagram may be easier to read than the
other two.

Let F; and Fy be families of languages. A splicing system with L € F;
and 7 (R) € F» is said to be of (Fi,F2) type. Accordingly, we will sometimes
write, for instance, ‘regular set of splicing rules’ when we mean a set of splicing
rules of which the Z-representation is a regular language.

In natural splicing, one splicing can yield both zju1voy2 and zausv1y;.
The formal language variant of this kind of splicing is called 2-splicing and is
investigated in, for instance, [PRS98, Chapter 8]. Note that the splicing model
we consider here can simulate 2-splicing by adding for each rule (uy, vy, ug,v2)
also the symmetric rule (ug,ve,u1,v1).

3.1 Non-iterated splicing

One way to look at the splicing operation is to see it as a unary operation on
languages. In other words, we can consider the language consisting of all words
that are the result of splicing any two words from a given initial language using
an appropriate splicing rule from a given set of splicing rules.

Definition 3.3 For a splicing system h = (V, L, R)
o(h) ={z € V*| (z,y) b z for some z,y € L and r € R}

is the (non-iterated splicing) language generated by h. O

As explained above, a splicing relation R is usually represented by a language
Z (R), which gives the possibility to study the power of splicing with rules from
a certain family of languages: for instance, what is the result of splicing linear
initial languages with linear splicing rules? We give some initial examples.
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Example 3.1 Let h = ({a,b,c,d}, L, R) be a splicing system with
L = {d"V"-d|n>1}U{d-b"c"|n>1} € LIN
Z(R) = {a#b'd$d#b'c|i>1} € LIN

Clearly the first term of each splicing should be of the form a*b¥d and the
second term of the form db'¢’, for some k,j > 1. Moreover, because of the
form of the rules it must be that & = j. Thus all splicings are of the form (we
indicate the cutting points with a ‘|" )

(a® | bFd, d | b*F) F aFbFF
Hence the language generated by h is
o(h) ={a"b"c" |n>1} € CS—CF.

O
Example 3.2 Let h = ({a,b,c,d}, L, R) be a splicing system with
L = {a"V"|n>1}U{c"d" |n>1} € LIN
Z(R) = {b#3#c} € FIN
The language generated by h is
o(h)={a" "™ c™d" |n;>m; >1(i=1,2) } € CF—LIN.
O

Given two families of languages, F; and F;, the family S(F;, F2) of non-iterated
splicing languages, obtained by splicing F; languages with F> rules, is defined
in the obvious way:

S(F1,F2) ={o(h) | h=(V,L,R) with L € F; and Z(R) € F2}.

The families S(Fy, F2) are investigated in [Pau96a] and [PRS96b], for F; and
Fo in the Chomsky hierarchy. An overview of these results is presented in
[HPP97]. When S(F;, F2) was not found to be equal to one of the six Chomsky
families, the greatest lower bound F3 and the smallest upper bound F4 among
them are given: F3 C S(Fy,F2) C Fy. These results are collected in Table 1
from [HPP97], which we repeat here as Table 3.1. As an example, the optimal
classification (within the Chomsky hierarchy) of splicing LIN languages with
REG rules is LIN C S(LIN,REG) C CF.

In Chapter 5 we will show that the lower and upper bounds given here for
S(LIN, FIN) and S(LIN,REG) can be replaced by the characterization LINGLIN,
the family consisting of finite unions of elements from LIN - LIN.

Additionally we will consider the family S(F,[1]) of languages obtained
by splicing F languages using rules of radius 1, i.e., for each splicing rule
(u1,ug,us,ug) we have |u;| <1 fori=1,2,3,4.



34 SPLICING SYSTEMS

(A1l Fo—»]] FIN | REG | LN | CF [ C | RE |
FIN FIN FIN FIN FIN FIN FIN
REG REG [ REG | REG,LIN | REG,CF | REG,RE | REG,RE
LIN LIN, CF | LIN,CF
CF CF CF
S RE
RE

Table 3.1: The position of S(F;,F2) in the Chomsky hierarchy

3.2 Iterated splicing

Above we have considered splicing as an operation on languages. Another way
to view the splicing operation is as a language generating mechanism: starting
from a given initial language L and a given set of splicing rules R, the resulting
language is the smallest language that contains L and that is closed under
splicing with rules from R.

Definition 3.4 The (iterated splicing) language o*(h) generated by a splicing
system h = (V, L, R) is defined by

a’(h) =
o (h) = o'(h) U a(o'(h)), i >0
o) = o)

Note that in general o!(L) = LU o (L) # o(L).
Similar to the non-iterated case, families of iterated splicing languages are
defined by

H(F,F2) = {o*(h) | h = (V,L,R) with L € F, and Z(R) € %y}

for F1,Fy € {FIN,REG,LIN, CF,CS,RE}. A first notable result was obtained in
[CH91], namely that iterated splicing of REG languages by FIN rules does not
lead outside REG: H(REG,FIN) = REG. The families H(F;,F2) were further
investigated in [Pix96], [Pau96a], [Pix95] and [P&u96b], and the results are
listed in Table 2 from [HPP97], which we repeat here as Table 3.2.

Inspecting Table 3.2, we see that, e.g., splicing systems of (REG, LIN) type
generate all regular languages but not all linear languages, and at least one
non-context-sensitive language. In the following example we give a splicing
system of (REG, LIN) type that generates a non-context-free context-sensitive
language.
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| Al Bo= || FIN REG LIN CF S RE
FIN FIN,REG [ FIN,RE | FIN,RE [ FIN,RE | FIN,RE | FIN,RE
REG REG | REG,RE | REG,RE | REG,RE | REG,RE | REG,RE
LIN LIN,CF | LIN,RE | LIN,RE [ LIN,RE | LIN,RE | LIN,RE
CF CF CF,RE | CF,RE | CF,RE | CF,RE | CF,RE
s CS,RE | CS,RE | CS,RE | CS,RE | CS,RE | CS,RE
RE RE RE RE RE RE RE

Table 3.2: The position of H(F;,F3) in the Chomsky hierarchy

Example 3.3 Consider the splicing system h = ({a,b}, L, R) defined by

bath € REG
{ba"b#$b#a"b|n >1} € LIN

L =
Z(R) =

Then it is easily seen that o’(h) = ba™b, o'(h) = {ba"b,ba"ba"b | n > 1},
o%(h) = {(ba™)7b |1 < j < 4,n > 1} and in general o*(h) = {(ba™)'b |1 < j <
2. m > 1} for each i > 0. Consequently

o*(h) = {(ba™)*b | n,k > 1},

which is clearly not context-free. In fact, c*(h) € CS — CF, since an LBA can
compare each pair of two adjacent groups of a’s (separated by a b) and in this
way check that all groups of a’s are of the same length. O

An interesting problem suggested by the information from Table 3.2 is to find
an algorithm to determine whether a regular language is in H(FIN, FIN). Our
attempt in this direction led to the following examples and to Theorem 3.1,
that states that each regular language can be generated by a finite splicing
system provided that we let every string be preceded by a special marker. This
was already observed in [Hea98, remark following Theorem 3.1], but we repeat
it here, and give a different proof.

Example 3.4 Let h = ({a,b}, L, R) be the splicing system defined by

L = {X a,b,aa,ba} € FIN
_ b ‘ b ‘ a ‘ aa ‘
Then o*(h) = {w € {a,b}* | w does not contain baa}, which is a regular

language.
The idea behind this is that we concatenate two (non-empty) words of which
we already know that they do not contain baa. Then we only have to ensure
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that such a concatenation does not create an occurrence of baa. Suppose that
the first word ends with a b. If the second word starts with an a, then we
have to be sure that directly after this a there is not another a — this gives the
rule (b, A, A\, ab). If the second word starts with a b, then there is no problem
— we add the rule (b, \, \,b). Now suppose that the first word ends with an a.
For the case that the second word starts with a b, we add the rule (a, A, A, b).
However, if the second word starts with an a, then we must guarantee that the
first word does not end with ba — this gives the rule (aa, A\, A\, a).

With these rules we cannot generate the words A,a,b,aa and ba, so they
form the initial language. Then we have

(@], [b)Fananrp ab and (01, 10) Fpany bb,

thus o*(h) contains all words of length 2 or smaller, which should indeed be the
case. Since each word that does not contain baa can arbitrarily be decomposed
into two subwords that do not contain baa, and since the rules are constructed
such that they represent all possibilities to concatenate two such subwords, now
all words not containing baa can be generated recursively from shorter words.
O

Example 3.5 The regular language a*ba*ba* is not in H(FIN,FIN): splicing
systems cannot distinguish between the two b’s, because there are arbitrarily
large numbers of a’s before, between and after them. More specifically, if one
of the two splicing sites of a rule contains less than two b’s, then the resulting
word may contain more or less than two b’s, whereas if each splicing site has
to contain exactly two b’s, then the number of a’s in between is bounded.

However, a*ba*b is in H(FIN, FIN), since o*(h) = a*ba*b for the finite splic-
ing system h = ({a,b}, L, R) with

= {bb, abb, bab, abab}

L
R:{a‘bb a‘ba ’ba‘ }

‘ abb ’ ‘ aba

The reason for this is that in this case the two b’s can be told apart: the first is
followed by an a or a b, the second is not. Therefore, the strings ba and bb can
be used as two distinct ‘handles’ or ‘fixed points’ from where the arbitrarily
large numbers of a’s can be generated. (See also [Hea98, p.276].) O

The idea behind the following theorem, that states that any regular language
preceded by a new symbol is in H(FIN, FIN), is that this new symbol can be
used as a handle. We explain this through an example.
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Example 3.6 Consider the language ca*ba*ba* € REG. This language can be
generated by a finite splicing system h = ({a,b,c}, L, R) defined as follows:

L = {ca'ba’ba® | i, 5,k € {0,1}}
R catbalba ‘ caba ‘ ca ‘ | ij {01}
= = T T n T 7
ca'ba’b ‘ " catbal bead ‘ T o¢ ‘ J ’

Now each of the four rules (ca’ba’ba, ), ca’ba’b, \), for i,§ € {0,1}, can be used
to generate the arbitrarily many a’s in the third group:

(ca’ba’ba | , ca’ba’b | a") F ca’ba’ba™ ' for each n > 0.

Similarly, the a’s in the second and first group (in this order) are generated
using the rules (ca’ba, A, ca’b, A), with i € {0,1}, and (ca, A, ¢, \), respectively:

(ca’ba | b, ca’d | a"ba™) F ca’ba™ T ba™  for each n,m > 0,

and
(ca | bb, c| a™ba™ba*) F ca™rba™bak  for each n,m, k > 0.

a

We need some definitions related to classical ‘pumping properties’ of finite
automata. Let A = (Q,X%,d,qo, F) be a deterministic finite automaton. We
call qoqi . .. gm a state sequence (for agar ... apm—1) in Aifg; € Q for 0 < j < m,
m > 0, g € F and there are a; € X such that 6(g;,a;) = giy1, for 0 < i < m.
A state sequence qp...¢;...qj... ¢y in A with 0 <7 < 5 <m reduces to a state
sequence qq . . . giqj+1 - - - ¢gm in A if ¢; = ¢; and j is the smallest index such that
there is an ¢ < j with ¢, = g;.

A word w € L(A) reduces to a word w' € L(A), denoted w > w', if the
state sequence for w in A reduces to the state sequence for v’ in A.

Theorem 3.1 Let K be a regular language over %, and let ¢ be a symbol not
in X. Then cK € H(FIN,FIN).

Proof. Construction. Since REG is closed under concatenation with symbols,
there is a DFA A = (Q, X U{c}, 9, qo, F) with L(A) = cK. We construct a finite
splicing system h = (X U {c}, L, R) such that o*(h) = L(.A) as follows.

L = {weL(A)| the state sequence for w in A does not contain

three occurrences of the same state }

R = {—’— | cuvw € L for a w € X%, v # A,

d(qo, cu) = q¢ = d(q,v) foraqe Q }

It is clear that L and R are finite.
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Correctness. A proof that o*(h) C L(A) uses induction on o*. For i = 0 we
have 0°(h) = L C L(A) by the definition of L. Now assume that o*(h) C L(.A)
for a certain ¢ > 0, and observe the language o**'(h) = o'(h) U o(o'(h)).
Suppose that 2 and y in o’ (h) are spliced using the rule (cuv, A, cu, \) from R,
hence z = cuvw and y = cuz for some w,z € ¥*. From the definition of R we
know that d(qg,cu) = q and d(q,v) = ¢, for some ¢ € Q. Since y is in o*(h)
and thus in L(A), and since A is deterministic, we also have 6(g, z) € F. Thus
cuvz, which is the result of splicing 2 = cuvw and y = cuz using (cuv, A, cu, \),
is in L(A). Consequently o?t1(h) C L(A), hence o*(h) C L(A).

For a proof of L(A) C o*(h) first note that for every word zy € L(A) a
reduction zg > 21 > ... > 2, where k > 0, exists such that the state sequence
for z; does not contain any state twice.

We claim that this reduction can be carried out in the reverse order by
h, which means that any word in L(A) can be created starting from words in
L and using splicing rules from R. Obviously, z; € L and thus z; € o*(h).
Now assume that z; € o*(h) for some ¢ with 0 < £ < k, and consider zp ;.
From the reduction step zy_; > 2y we know that there are u,v,w € ¥* such
that zp 1 = cuvw, v # X, 0(qo,cu) = q, 6(q,v) = q, 6(qg,w) € F and the
second occurrence of ¢ is the first repetition in the state sequence for zy_; in
A. Then z; = cuw. Furthermore, since it is possible to reach a final state
from ¢, this can also be done without passing any state twice. Hence there is
a w' € ¥* such that cuvw’ is in L and thus r = (cuv, A, cu, A) is in R. Now
(cuv | W', cu | w) b, cuvw = zp_1, and since cuvw’ is in L and we assumed
that cuw = zy is in 0*(h) we have zy_; € o*(h). O

Note the similarities in the above proof with the pumping lemma for regular
languages, that states that if K is a regular language, then there is an n > 1
such that for each z € K with |z| > n there exist u,v,w such that z = uvw,
v # A |Juv| < n and ww'w € K for all 4 > 0. In the part of the proof where
we show that o*(h) C L(A), the splicing of x = cuvw and y = cuz using
(cuv, A\, cu, \) to give cuvz can be seen as the extension of cuz to cuvz, after
which the splicing of two occurrences of cuvz using the same rule yields cuv?z,
and so on (i.e., we ‘pump up’). On the other hand, for the reduction step
cuvw = zp_1 = z¢ = cuw used in the part of the proof that demonstrates that
L(A) C o*(h) it holds that cuw = cuvw (i.e., we ‘pump down’).

A solution to the problem of deciding whether a regular language is in
H(FIN, FIN) can be found in [BZ99].

3.3 Restricted non-iterated splicing

In this section we consider the setting where the general splicing operation
(x,y) Fr z may only be applied in a certain context.



SPLICING SYSTEMS 39

We start by recalling the definitions of certain types of restricted splicing
from [PRS96b, KPS96]. We splice in length-increasing mode (in for short) if
the length of the resulting string is strictly greater than the lengths of the two
input strings, in length-decreasing mode (de) if the length of the resulting string
is strictly smaller than the lengths of the two input strings, in same-length mode
(sl) if the two input strings have the same length, and in self splicing mode
(sf) if the two input strings are equal. Formally, for a splicing rule r

Fr z and |z| > max{|z|, |y|}

(z,y)

l—fe z iff (z,y) b, z and |z| < min{|z|, |y|}
(z,y) Fr z and |z] = [y
(z,y)

?

F.zand z =y.

?

Let h = (V, L, R) be a splicing system. With the restricted splicing operations
given above we define the (restricted non-iterated splicing) languages

ou(h) ={2 € V" | (z,y) FF 2 for some z,y € L and r € R}
for p € {in,de, sl, sf }. Similarly we define the families
Su(]‘—l,fg) = {O’u(h) | h = (V,L,R) with L € F; and Z(R) S fg}.

We mainly consider F; = REG, LIN, CF and F> = FIN, REG, LIN, CF. We repeat
in Table 3.3 the parts of Tables 1, 2 and 3 from [KPS96] that give the lowest
upper bounds within the Chomsky hierarchy for the families S,(Fi,F») for
the modes p that we consider. For comparison we repeat in the first row of
the table the smallest upper bounds for unrestricted non-iterated splicing (also
called free splicing, f for short) given in Table 3.1.

| 7o — || FIN [REG| LIN | CF | FIN | REG | LIN | CF |

f JREGJREG[LINJCF [ CF|CF[REJRE
in__| REG [ REG CFT[] ¢S | CS [CS[CS
de || REG | REG CFT[] ¢S | CS | RE | RE
sl [ LIN ] LIN [ CFF CFT RE | RE
sf | ¢S | CS CFT RE | RE

| | F1 =REG | F1 =LIN,CF |

Table 3.3: Smallest upper bounds of S, (Fi, F») within the Chomsky hierarchy

For the families corresponding to the entries marked with CF* it is only known
that the family contains a non-context-free language; it is not yet determined
whether the smallest upper bound within the Chomsky hierarchy is CS or RE.

Note that although, for instance, the table contains the same values for
the families S (REG, FIN) and S5 (REG, REG), this does not necessarily mean
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that they are equal: they only have the same upper bound in the Chomsky
hierarchy. The same remark holds for the equality of the tables for F; = LIN
and JF; = CF.

Examples of restricted splicing in these four modes are given in Chapters 5
and 6.

3.4 Research topics

In the literature on splicing systems, a splicing rule (u1,v1,us,v9) is usually
represented by the string wui#vi$us#ve, and so a set of splicing rules is a
language. Although this string representation of splicing rules is very natural,
other representations are possible. The question arises whether the results on
the generative power of splicing with rules from a certain family of languages,
that are mentioned in the literature, are properties of the splicing systems or
of the specific representation of splicing rules that is chosen. For example,
do we get different results if we first write the left contexts of the rule and
then the right contexts, choosing uj #uo$v1 #v9 instead of uy #v1Sus#vy as the
string representation of (u1,v1,us,v2) 7 In Chapter 4 we answer this question
in detail for non-iterated and iterated splicing systems, and show that the
classifications in Tables 3.1 and 3.2 are not influenced by this particular change
in representation. We briefly discuss some other, related, string representations.

The first two columns of Table 3.1 show that S(F,FIN) = S(F,REG) for
all families F considered here except for LIN, for which it is only known that
S(LIN, FIN) and S(LIN,REG) have the same upper and lower bounds within
the Chomsky hierarchy. In Chapter 5 we show for all F except CS how the
regular rule set may be replaced by a finite one, i.e., we give direct proofs of the
equalities S(F,REG) = S(F, FIN). Moreover, we show that S(F,FIN) = F@F
— i.e., it consists of all finite unions of concatenations of two languages in F—
and thus obtain the new result that both S(LIN,FIN) and S(LIN,REG) are
characterized by the family LIN @& LIN. Furthermore, we try to extend the
latter result to the case of restricted non-iterated splicing.

For several modes u of restricted splicing and for certain families of lan-
guages F; and Fo, it is not yet known what the smallest upper bound within
the Chomsky hierarchy is for splicing F; languages in mode p using rule sets
from F;, (see Table 3.3). In Chapter 6 we solve the open problems in this table,
and moreover we improve some of the upper bounds given there from CS to
CF(ZF), the family of context-free valence languages over ZF, for either k = 1
or k=2.



Chapter 4

String representations of
splicing rules

In most of the literature on splicing systems a splicing rule r = (uy, vy, ug, v2)
is represented by the string 7 (r) = uj #v1$us#ve. In this way a set of splicing
rules becomes a language and consequently its complexity can be measured
by determining its position in the Chomsky hierarchy. We investigate whether
taking a string representation of splicing rules other than the standard one has
any effect on the position in the Chomsky hierarchy of the families of non-
iterated and iterated splicing languages.

To allow for other string representations, we extend the notation for families
of splicing languages S(Fy, F2) and H(Fi,F2). Let p: (V*)* — W* be a given
string representation of splicing rules over the alphabet V', for some alphabet
W. Then define

Sp(F1,F2) ={o(h) | h =(V,L,R), with L € F; and p(R) € Fo}
and
H,(F1,F2) ={o"(h) | h=(V,L,R), with L € F; and p(R) € F2}.

Hence, by definition, S(Fi, F2) = S,(F1,F2) and H(F1,Fa) = H,(F1,Fz) for
the standard string representation /.

We will also directly consider the family of splicing relations defined by the
family F of languages over W under the representation p : (V*)* — W*,

Ro(F) ={RC (V))*| p(R) € F}.

Now consider an alternative representation: first writing the left contexts, and
then the right contexts of the splicing sites. Formally we use the mapping
N (VA = VFH4V*SV*#V* defined by 1 (uy,v1, uz, v2) = uy FusSvi #vs.

In Section 4.1 we investigate whether the splicing relations defined by the
language families from the Chomsky hierarchy are changed when we move from

41
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the Z-representation to the |1-representation. In other words, for each F; in
the Chomsky hierarchy, we determine whether or not R, (F2) = R,,(F2).

It turns out that for 7, € {FIN,REG,CS,RE} indeed R, (F2) = R, (F2).
Obviously this implies for all F; that S, (F1, F2) = S, (Fi, Fa) and H,(Fy, Fa) =
H (Fi,F2).

For F, € {LIN, CF}, for which we show in Subsection 4.1.1 that R (F2) #
R, (F2), we prove that nevertheless S (F1,F2) = S, (F1,Fz) for all F; in the
Chomsky hierarchy (Section 4.2), while in the case of iterated splicing we only
show that the smallest upper bounds and greatest lower bounds given for
H_(F1,F3) in Table 3.2 also hold for H (F;,F2) (Section 4.3). The precise
relation between H, (F1,F2) and H ,(F1,F2) in these cases is open for further
investigation.

In Section 4.4 we discuss related string representations.

4.1 Families of splicing relations

In this section we compare the families of splicing relations defined by the two
string representations .~ and L1 of splicing rules.

Observe that representations like Z and 11 define a one-to-one correspon-
dence between a splicing rule (u, v, w, ) and its string representations u#vSw#x
and u#wSv#x, respectively. Thus when considering such a representation p of
a splicing relation R over the alphabet V and a language L C V*#V*§V*#V*,
one has p(R) = L if and only if R = p~!(L). Consequently we may write

Ry(F) ={p (L) | L CV*#V*$V*#V* and L € F}.

Hence proving that R (F) C R,,(F) amounts to verifying that R = Z (L)
for an L € F implies 1(R) = K for a K € F. Consequently we have to prove
that L1(Z (L)) € F for every L € F with L C V*#V*$V*#V*. Note that
this is a closure property of the family F, namely closure under the operation
117! that maps a string u#vSw#z to the string u#wSv#ae.

Also note that this operation is its own inverse, which implies that |17 -l =
ZW tsince MZ P = (MZz H" = (Z Y~ = Z 117l This means that
R_(F) C R, (F) implies the converse inclusion R (F) C R (F).

4.1.1 LIN and CF splicing rules

It is easy to see that R (CF) # R ,(CF): the set of rules R = {(a",b™,a",b™) |
m,n > 1} is not context-free when the classical Z-representation is used. If
we use the new |/1-representation instead, then 1(R) = {a™ #a" $0™ #b™ |
m,n > 1} is a context-free language.

We now show the same inequality for LIN. Consider the splicing relation
R = {(a?,c?,b",d*) | p,q,7,s > 1 and p+q = r+s}. Then the 7 -representation
of R is a linear language, as demonstrated in the following example.



STRING REPRESENTATIONS OF SPLICING RULES 43

Example 4.1 Let G be the linear crG with start symbol S defined by

S — aSd|a#Td| aU#d
T — cTd|cVb#

U — aUb|#cVb

V. — c¢Vb|$

It can easily be verified that L(G) = Z(R) = {aP#c1$0"#d° | p,q,7,s > 1 and
p+q=r+s} O

The -representation of R, however, is not linear. To prove that, we use
Lemma 2 from [Gre79], which we repeat here.

Proposition 4.1 Let L C a™btctdt be a language such that
1. a™b"ckd* € L for all n,k > 1,
2. if a™b"c*dl is in L, then k < £, and
3. there are integers t1,to > 1 such that, if a"b™c*d is in L and n > m,
then (n —m)t; < (k + £)ts.
Then L 1is not linear context-free.

Lemma 4.1 K = {a?b"c%d’ | p,q,7,s > 1 and p+q =1+ s} € LIN.

Proof. Proposition 4.1 is applicable, because obviously K C a™btctd™; (1) if
p=rand g =s, then p+q=r+s; (2) if p = r and we must have p+q =r+s,
then it has to be the case that ¢ = s; (3) taking t; = to = 1, we see that if p > r
andp+qg=r+s,then 0 <p—r=—qg+ s, hence p—r < g+ s. Consequently,
K is not linear context-free. O

Since LIN is closed under homomorphisms, from Lemma 4.1 it follows that
N(R) = {aP#b"$c1#d° | p,q,7,s > 1 and p+q = r+s} & LIN and consequently
R, (LIN) # R, (LIN).

Theorem 4.2 R (F) # R, (F) for F = LIN, CF.

Consequently, for LIN and CF splicing rules, it matters which string represen-
tation is used.

4.1.2 FIN, REG, CS and RE splicing rules

For the finite languages, it should be clear that the two representations are
equivalent: if R is a finite splicing relation, then both Z(R) and V(R) are
finite languages.

For the regular, context-sensitive and recursively enumerable languages we
use the following lemma.
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Lemma 4.3 REG,CS and RE are closed under 117 .

Proof. The mapping 1 Z 7! can be realized by a 2-way deterministic gener-
alised sequential machine (2DGsM, a finite-state device with a 2-way input tape
and a 1-way output tape, see [AU70]): on input u#vSw#z it outputs u#, skips
v$, outputs w$, returns on the input to the first #, outputs v#, skips $w# and
finally outputs x. Since 1 7 ~!is its own inverse, it can also be realized by an
inverse 2DGSM mapping. The result now follows from the closure of REG, CS
and RE under inverse 2DGSM mappings, see [AU70, Theorem 2. O

As observed before, this closure property implies the following equalities.
Lemma 4.4 R (F) =R (F) for F = FIN,REG, CS, RE.

Consequently for splicing systems with FIN, REG, CS or RE splicing rules it does
not matter whether we use 2 or |1 as string representation.

4.2 Families of non-iterated splicing languages

We know that R, (F2) = R,,(F2) for F» € {FIN,REG,CS,RE}, and thus that
for each of the six families F; considered here the following holds.

Theorem 4.5 S, (F;,F2) = S,(F1,F2) for F» = FIN,REG, CS, RE.

For F, € {LIN,CF}, however, we have demonstrated that R (F2) # R,(F2),
and consequently, we still have to investigate the situation for these two possi-
bilities for 2. Because in Table 3.1 exact classifications are given for S(F, LIN)
and S(F,CF) for each F except for REG, we consider the splicing of non-REG
languages apart from the splicing of REG languages.

Theorem 4.6 Sz(fl,Fg) = SM(Fl,]‘—Q) fOT‘ .7:1 7é REG and Fg = |_|N, CF.

Proof. We show that the results used in [HPP97] to determine the position of
S_(F1,F2) with F; # REG and F, € {LIN,CF} in the Chomsky hierarchy also
hold when the |-representation is used. These results are the following:

(1) S,(FIN,F3) C FIN (obvious),

(2) F1 C S (F1,Fe) [HPPY7, Lemma 3.2],

(3) L1/Ly € S,(Fa,F2) for each Ly, Ly € F» [HPPY7, Lemma 3.7].

The proof of (1) is independent of the splicing rules, therefore S, (FIN, F2) C FIN
holds. In the proof of (2), only one splicing rule is used, (A, ¢, ¢, ), for which
the Z-representation is equal to the |1-representation. For the splicing relation
used to prove (3), whichis R = {(\,w¢,¢, ) | w € Lo}, where Ly € Fo, Ly C V*
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and ¢ ¢ V, it should be clear that both Z(R) = #Loc$c# and N(R) =
#c$Loc# belong to Fo.

By (1) and (2) we have FIN C S, (FIN, F2) C FIN. As each RE-language is
the quotient of two linear languages ([LLR85]), from (3) the inclusion RE C
S,(LIN,LIN) C S, (LIN,CF) follows. Hence this part of the table does not
change, and since exact classifications are obtained, we have proved the theo-
rem. O

We now show that S, (REG, F2) = S,(REG, F3) also holds (for F» = LIN, CF),
by giving a direct proof.

We start by providing a normal form for splicing systems with regular initial
language and rules from a family that is closed under GsM mappings. According
to this normal form, every splicing rule is of the form (u,p,q,z), where u and
x are strings, while p and ¢ are symbols.

This normal form is suggested by the fact that the strings v; and wy do
not appear in the result when a splicing rule (uq,v1,us9,v2) is applied. We
only need the fact that the initial strings have these substrings next to the
cutting points. However, the interchange of these two strings causes the fact
that R, (LIN) # R, (LIN) and R, (CF) # R, ,(CF), as explained in Section 4.1. If
we are able to restrict v; and us to symbols rather than strings, we do not have
this problem: since LIN and CF are closed under GsM mappings, it is possible
to interchange the two symbols.

We need some notation: let A = (Q,X%,d,qo, F') be a deterministic finite
automaton, and let p € Q and u € ¥*. We use p= to denote the fact that
p has an outgoing path with label u in the state transition diagram of A, i.e.,
5(p,u) # @. Similarly, we write “p if p has an incoming path with label u,
i.e., p € 0(q,u) for some q € Q.

Lemma 4.7 Let F be family of languages that is closed under GSM mappings.
For each splicing system h = (V, L, R) of (REG,F) type an equivalent splicing
system hy = (V1, L1, Ry) of (REG,F) type can be constructed with Ry C Vi* x
V1 X V1 X ‘/1*

Proof. Construction. Let A = (Q,V,0,qo, F') be a deterministic finite automa-
ton accepting L, with Q@ NV = @. We may assume that A is ‘reduced’, i.e.,
every state in () occurs on a path from the initial state to a final state. Define
Q' ={¢ g€ Q}and Q" ={¢" | ¢ € Q}. Let L_,, be the language accepted
by A, = (Q,V,6,q0,{p}), and similarly let L,_, be the language accepted by
Aps = (Q,V,6,p, F). Define by = (VUQ'UQ", Ly, Ry) as follows:

Ly = U ((Lsp - p) U (0" - Lyp-))
PeEQ

Rl = {(ulupluqﬂa'v2) | (Ul,’l)l,’LLQ,’Ug) € R7
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peq,d €Q", p*s and “q}

Correctness. Since both L_,, and L,_, are regular and @ is finite, Ly is a
regular language.

Consider the Z-representation of a splicing rule, u#vi$us#vy. The trans-
lation of uy#v,SusFFvy into uy#p'8$q"#vs can be realized by a GSM mapping,
that simulates the transition diagram of A. Such a GSM copies u1# to the
output, guesses a state p and writes p’$, and then reads without writing until
it reaches $, in the meantime checking that v; can be read in A starting in
p. After $ it does something similar for us#vo. Since F is closed under Gsm
mappings we have 27 (R;) € F.

From the construction above, it is clear that £ = z1u1v1y1 and y = zauv2y2
are in L, for z;,u;,v;,y; € V* if and only if 2’ = zyu;-p’ € Ly, with p
such that "' p, and v = ¢"-voys € L1, with ¢ such that ¢2%. Moreover,
r = (uy,v1,u,v3) € R if and only if 7' = (uy,p',¢",v2) € Ry with p™> and “3¢.

Consequently we have (z1u1 | viy1, zoug | v2y2) br z1u1v2ys if and only if
(z1u1 | ', q" | vaye) b z1urv2YS. O

Hence there exists an effective construction that transforms a splicing sys-
tem of (REG, F) type into an equivalent splicing system of (REG, F) type that
is in normal form. Recall that the ‘default’ string representation is the /-
representation (see page 32). Using a GSM mapping similar to the one used in
the proof of Lemma 4.7 we can prove that the lemma also holds when using
the |1-representation.

Furthermore, the translation of the Z-representation of a rule in normal
form into the |1-representation (i.e., u#pSq#x — u#q$p#x) can also be real-
ized by a GSM mapping. Such a GsM reads and outputs u#, keeps p$ in its finite-
state memory, when reading ¢ it outputs ¢$p, and then reads and outputs #z.
Clearly, this also works for the translation of the 11- into the 7 -representation.
Consequently, for a splicing relation R in normal form, 7 (R) € F if and only
if 1(R) € F.

Hence we have the following result, which is applicable for F = LIN, CF.

Theorem 4.8 S, (REG,F) = S,(REG,F) whenever F is closed under GSM
mappings.

Now, summarizing our results on non-iterated splicing, we have the equality
S (F1,F2) = S,(F1,Fe) for all Fi,F, in the Chomsky hierarchy.

4.3 Families of iterated splicing languages

Similar to the case of non-iterated splicing, we want to know whether the
results on iterated splicing change when we use the 1-representation instead
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of the Z-representation. Since we know that R, (Fy) = R, (F2) for Fo =
FIN, REG, CS, RE, we immediately have the following theorem, for F; in the
Chomsky hierarchy.

Theorem 4.9 Hz(fl,]‘—g) = Hw(fl,fg) for ]:'2 = FlN, REG7 CS, RE.
For F5 = LIN, CF we have the following result.

Theorem 4.10 For F» = LIN, CF and arbitrary F,, H(F1,F2) has the same
upper and lower bounds in the Chomsky hierarchy as H,(Fi,F2).

Proof. We check whether the results used in [HPP97] to fill the LIN and
CF columns of Table 3.2 also hold when the 1-representation is used. Those
results are the following:

(1) 7 € H,(F1,F2) [HPP97, Lemma 3.12],
(2) H,(F\,F2) € Fy for F, € {REG, LIN,CF,CS} [HPP97, Lemma 3.13],

(3) H,(FIN,FIN) contains infinite languages [HPP97, discussion in proof
of Theorem 3.3],

(4) For all L C V* L ¢ F, and ¢,d ¢ V we have
L' = (de)*L(dc)* Uc(de)* L(de)*d ¢ H,(Fi,F2) [HPP97, Lemma 3.16],

(5) H (F1,F2) € CS for Fp # FIN [HPP97, Lemma 3.15].

In the proofs of (1) and (3) the Z-representation of the splicing relation is in
FIN, for (4) it is arbitrary (i.e., RE), and for (5) it is in REG. These families
are closed under 12 _1, hence the same results are obtained when we use the
lI-representation.

In the proof of (2) from a splicing relation R a new splicing relation R’ =
{(u1, cvy,ugc,v2) | (u1,v1,us,v2) € R} is constructed. Such a construction also
works when the |/1-representation is used: /1(R') can be obtained from |/1(R)
by changing the § into c$c. The families in the Chomsky hierarchy are closed
under this operation (A-free homomorphism).

For 71 # RE, by (1), (2), (3) we have F; C H,(F1,F2), while from (4)
and (5) it follows that the smallest upper bound for H (F;,F32) is RE. By (1)
immediately RE C H (RE, ). O

Consequently, Table 3.2 does not change when we use the |1-representation
instead of the Z-representation. Note, however, that we have not proved that
H,(Fi,F) = H,(F1,F2), for Fo = LIN,CF, except for the obvious case in
which F; = RE where upper and lower bound coincide with RE.
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4.4 Representations other than ~ and 11

We have considered one alternative string representation for splicing relations,
that separates left and right contexts rather than the two initial strings. How-
ever, there are 24 possible representations in the ‘#$#’-style (i.e., representa-
tions of a splicing rule (uy, vy, u2,ve) where uj, vy, ug,vy are concatenated in
any order and separated by #, $ and # (in this order)), corresponding to the
permutations of the four components of the splicing rules. We do not claim
that all these permutations have a natural interpretation, but still we believe
that the effect of using any of these representations on the classification results
given in Tables 3.1 and 3.2 should be determined. In the sequel we discuss the
remaining possibilities in a rather informal way. This discussion also holds for
string representations that use, for instance, three times the same symbol, or
three different symbols to separate the four parts of a splicing rule.

4.4.1 Splicing with FIN, REG, CS or RE rules

For (non-iterated or iterated) splicing with FIN, REG, CS or RE splicing rules, it
does not matter which of the ‘#3$#’-representations is used: for a finite splicing
relation obviously each of these representations yields a finite language, and for
a REG, CS or RE splicing relation R, an inverse 2DGSM mapping like the one
which is used to prove Lemma 4.3 can transform 7 (R) into p(R) for each
of the other representations p in this style. In other words, if p is one of
these representations, then R (F2) = R,(F2) and consequently S, (Fi,F2) =
Sp(F1,F2) and H,(F1,F2) = Hy(F1,F2), for F» = FIN,REG, CS, RE.

4.4.2 Splicing with LIN or CF rules

Non-iterated splicing non-REG languages with LIN or CF splicing rules yields
the same classification in each one of the ‘#$4# -representations, because the
results used in [HPP97] to fill the corresponding part of Table 3.1 are easily
seen to hold for all string representations p in this style, cf. Theorem 4.6.
Since in these classifications upper and lower bound coincide, this implies that
Sz(fl,fg) = Sp(fl,fg), for .7:1 7é REG and fg = |_|N, CF.

In the case of non-iterated splicing REG languages with CF splicing rules, we
use the normal form of Section 4.2 for the rules, that makes it possible to change
the Z-representation u#p$q#x of a splicing rule into the l/1-representation
u#qSp#x by applying a GSM mapping (recall that this is possible only because
p and ¢ are symbols). Obviously, there exist GSM mappings that map u#pSq#z
into each of the 12 representations in which u precedes z. To see that the other
12 possibilities can also be obtained by operations preserving context-freeness,
note that CF is closed under the operation CYCLE, that can move z in front
of u [HUT79, Exercise 6.4c]. Since, for a language K, CYCLE (K) is defined as
{yz | xzy € K for some z and y}, we need some extra operations to make sure



STRING REPRESENTATIONS OF SPLICING RULES 49

that, for instance, u#p$q#x is transformed only in z#u$p#q. This can be done
by first creating u#p$q#xo, where ¢ is a new symbol, then CYCLE followed by
intersection with an appropriate regular set to obtain z ¢ u#p$q#, and finally
a GSM mapping to get z#u$p#q. Since CF is closed under all these operations,
this shows that S, (REG, CF) = S,(REG, CF) for each ‘#83#-representation p.

For non-iterated splicing REG languages with LIN rules, however, we give
an example that shows that the ‘#$#’-representations of a rule (u,v,w,z) in
which z precedes u are not equivalent to the Z-representation.

Example 4.2 Consider a splicing system h = ({a,b,c,d}, L, R) with

L = c¢-{a,b}"-d
R = {(ct,d,c,a™b'd)|i,j,n >1and i+ j=n}.

Then the ‘reverse’ representation of R (i.e., the representation that transforms
(u,v,w, ) into xH#HwWIvH#u) is

R, = {a"b'd#c$d#ct | i,j,n > 1 and i + j = n},
which is a linear language. The non-iterated splicing language generated by h,
o(h) = {ct/a™b'd | i,5,n > 1 and i + j = n},

is not in LIN (by the pumping lemma for linear languages [HUT9, Exercise 6.11]).
Since S, (REG, LIN) C LIN, clearly this ‘reverse’ representation is not equivalent
to the Z-representation. O

Of course, all representations p in which u precedes x are equivalent to the
Z -representation, by using the same arguments as in the CF case. So for those
representations we have S, (REG,LIN) = S,(REG, LIN).

For iterated splicing, it is easy to see that the results used in [HPP97] to
fill the LIN and CF columns of Table 3.2 hold for every ‘#8$4 -representation,
by observations as in the proof of Theorem 4.10. Hence this part of that table
does not change either.

4.5 Summary

Summarizing the results of this chapter, we see that for non-iterated splicing
families all ‘#$#’ -representations are equivalent, except for the twelve cases
mentioned above, where a REG initial language is spliced using LIN rules.

For iterated splicing, however, we have seen that those representations are
only equivalent when splicing with FIN, REG, CS or RE rules; in the case of LIN
or CF rules we know that the classifications (i.e., the upper and lower bounds)
in Table 3.2 do not change, but we do not yet know whether or not all families
of iterated splicing languages stay the same.






Chapter 5

Non-iterated splicing with
regular rules

The first two columns of Table 3.1 show that S(F,FIN) equals S(F,REG) for
all F except LIN, for which it is only known that they have the same upper and
lower bounds. We give a direct proof of the equalities S(F,FIN) = S(F, REG)
for all Chomsky families, and moreover we prove that S(F,FIN) = F @ F, for
each Chomsky family F except CS. This yields the missing characterizations
in Table 3.1: S(LIN,FIN) = S(LIN,REG) = LIN & LIN.

We try to replace regular rule sets by finite rule sets for the four kinds of
restricted splicing that we consider as well.

5.1 Unrestricted splicing

We first give a characterization of S(LIN,FIN) in terms of LIN. We do this in a
general setting: we give a characterization of S(F,FIN) in terms of F, for each
family F that is closed under GSM mappings, union and concatenation with
symbols.

For a language family F we use F @ F to denote finite unions of elements
of 72, i.e., languages of the form K,-L U...UK,, -L,, n >0, with K;, L; € F.
If we assume that {A} and @ are elements of F, then F & F equals F if and
only if F is closed under union and concatenation. Hence F & F = F for each
Chomsky family except LIN, which is not closed under concatenation.

Lemma 5.1 Let F be a family of languages closed under GSM mappings, union
and concatenation with symbols. Then S(F,FIN) =F & F.

Proof. First we show that S(F,FIN) C F& F. Let h = (V, L, R) be a splicing
system with a finite number of rules and with L € F.

Consider the rule r = (u1, v1, u2,v2). When r is applied to strings z1uiv1y;
and zougv2ys, then only the substrings x1u; and vy, are visible in the resulting

ol
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string zjujvayz. We define two languages derived from the initial language
following this observation: let L. = {zu1 | zuiviy € L for some z,y € V*},
and let L,y = {vay | zugvay € L, for some z,y € V*}.

Observe that both L. and L,y can be obtained from L by a GSM mapping
that, in the case of L, reads and outputs z, guesses that it can start reading
ujvy for the splicing rule r = (uq,v1,u2,v2), reads and outputs u;, and reads
the rest of the input without copying it to the output, while checking that
it starts with v1. A similar GSM can construct L,), and consequently these
languages are in F. Clearly, o(h) = {,cp L(-Lyy, and since there is only a
finite number of splicing rules this means that o(h) € F @ F.

Second, we show that F & F C S(F,FIN). Consider K; - L1 U... UK, - L,
with K;, L; C V* in F, for some alphabet V and n > 0. This union is obtained
by splicing the initial language ;' ; K;c; U U}, ¢;L; with rules (X, ¢;,c},N),
i =1,...,n, where the ¢;, ¢, are new symbols. Since F is closed under union
and concatenation with symbols, the initial language belongs to F. O

This lemma is applicable for the Chomsky families FIN, REG, CF, RE and LIN.
For the first four of these families it gives the known characterizations S(F, FIN)
=F ®F = F. The equality S(LIN,FIN) = LIN @ LIN, however, appears to
be new, although the family LIN @& LIN is mentioned in the proof of Theo-
rem 3 of [Pau96al, where it is demonstrated that S(LIN,REG) is strictly in-
cluded in CF. In fact, in that proof the inclusion S(LIN,REG) C LIN & LIN
is proved. Together with our characterization of S(LIN,FIN) and the fact that
S(LIN, FIN) C S(LIN, REG) this gives the following result, which gives a negative
answer to a question from [Pau96a]: is the inclusion S(LIN,FIN) C S(LIN, REG)
proper?

Theorem 5.2 S(LIN, FIN) = S(LIN,REG) = LIN & LIN.

Note that indeed LIN C LIN @ LIN C CF: the first inclusion follows from the
fact that LIN contains the language {A}, and it is a proper inclusion since
LIN is not closed under concatenation. The second inclusion is true because
LIN C CF and CF is closed under concatenation and union; it is proper since
languages in LIN@GLIN have indez at most two, while context-free languages can
have arbitrarily large index (for details, see the proof from [Pau96a] mentioned
above).

We can extend Theorem 5.2 to language families that are closed under
shuffle with symbols and intersection with regular sets, by refining the proof of
Lemma 5.1. In other words, when using an initial language from such a family,
regular sets of splicing rules are equivalent to finite sets of splicing rules. We use
a technique that is also used in [Padu96a, Theorem 5], where the cutting points
in words from the initial language are marked with new symbols in order to
reduce a finite rule set to a rule set with radius 1. We show how this technique
can be applied to (infinite) regular rule sets as well.
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Theorem 5.3 Let F be a family of languages closed under shuffle with symbols
and intersection with reqular sets. Then S(F,FIN) = S(F,REG).

Proof. The inclusion S(F,FIN) C S(F,REG) is clear. For the converse inclu-
sion we use the following construction.

Construction. Let h = (V, L, R) be a splicing system with L € F and Z(R) €
REG. Let A = (Q,VU{#,8$},0,q0, F) be a deterministic finite automaton with
L(A) = Z(R), QN (VU{#,$}) = @ and #,3 ¢ V. We construct a splicing
system h' = (V UQ, L', R") with L' € F, R’ finite and o(h’) = o(h) as follows.

L' = {zupvy | z,u,v,y € V*, zuvy € L and 6(qo,u#v) =p }
U
{zuquy | z,u,v,y € V*, zuvy € L and d(q,u#v) € F }
R = {(\p,a, N |6(p,%) =q}

Correctness. First, observe that L' can be constructed from L as follows: L' =
(LtQ)NK, where { denotes the shuffle operation and K = {zupvy | z,u,v,y €
V* and either 6(qo,u#v) = p or d(p,uftv) € F}. Note that the language K
can be constructed from Z (R) by a non-deterministic non-erasing FST mapping
that uses A. For example, when computing zuipviy from uy#viSus#vy the
FST first non-deterministically generates = and then simulates .4 on the segment
uy of its input, while copying its input to the output. At the end of uy, it reads
# and writes p to the output, where p is non-deterministically guessed. The
FST now reads v; and copies it to the output, while checking whether state p
is reached after reading vy in A. After this it reads $us#v, without copying
it to the output, and then it non-deterministically generates y. To compute
xugquay from wuiF#Hvi$us#ve a similar procedure is followed. Also note that,
because REG is closed under non-erasing FST mappings, K is regular. Since F
is closed under shuffle with symbols and intersection with regular sets, L' is in
F.

Second, it is clear that R’ is finite, since A has only finitely many transitions.

Third, we prove that o(h) C o(h'). Let © = zyujv1y1 € L, y = zougvays €
L and r = uy#v13ugs#vy € Z(R) be such that (z,y) b, z1uiv2y2. Then there
are p,q € @ such that d(qo,u1#v1) = p, §(p,$) = ¢ and 0(q, us#ve) € F.
Consequently there are ' = zyuipviy; € L', vy = zousquoys € L' and 1’ =
(A, p,q,\) € R with (2',y) b z1u1v9ys.

Finally, we prove that o(h’) C o(h). Let 2’ = upv € L', ¢y = wqz € L',
r"=(\p,q,\) € R and (2',y') b uz. Then it must be that v = zju; and
v = v1Yy1, for some 1, u1,v1,y1 € V* such that 6(qo, ui#v1) = p, and w = zous,
z = voye, for some g, us,ve,y2 € V* such that 0(q,us#ve) € F. Because
(A, p,q,\) € R, it also holds that d(p,$) = g. Consequently there is a rule
r = uiH#v1Sus#ve € Z(R). Moreover, by the construction of L', there must
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be x = zyujv1y; € L and y = zougvoys € L such that (z,y) b, z1uiveye = uz.
Hence o(h) = o(h'). O

Note that every rule (A, p,q,\) in R’ corresponds to a (regular) set of rules
{ w1 #v1Sus#ve | §(qo, u1#v1) = p and 0(q, ue#ve) € F } C Z(R).

Again, for all Chomsky families except LIN the last result is implicit in
Table 3.1. Here it is obtained through direct construction.

Note that we cannot replace the shuffle with symbols and the intersection
with regular sets by a GSM mapping, because it may be that the empty word is
one of the terms of the splicing and GsM’s are not allowed to write a non-empty
string while reading .

Also note that the construction in the proof of Theorem 5.3 gives an af-
firmative answer to another question posed in [Pau96al: can each language in
S(F,REG) be represented in a ‘simple’ way starting from languages in S(F, [1])7?
Indeed, whenever F is closed under shuffle with symbols and intersection with
regular sets, then S(F,REG) = S(F,[1]).

5.2 Same-length splicing

A closer look at the proof of Theorem 5.3 reveals that it also works for non-
iterated splicing in same-length mode, where the splicing of x and y is only
allowed if |z| = |y].

Theorem 5.4 Let F be a family of languages closed under shuffle with symbols
and intersection with a reqular set. Then Sg(F,FIN) = Sg(F, REG).

Proof. It is clear that in the construction used in the proof of Theorem 5.3 it
holds that |z'| = |z] + 1 and |y'| = |y| + 1. Thus we have |z| = |y| if and only
if |2'| = |y'| and consequently o (h) = o4 (h'). O

5.3 Self splicing

In the case of self splicing, where a string is spliced with itself, both splicing sites
are found in that same string. Hence the strategy of marking the two cutting
points of a splicing rule (uj,v1,u2,v2) in the input string with new symbols
(say p and ¢) does not work: if the second splicing site usve occurs before the
first splicing site ujvy, then self splicing zus q voyu; pv1z with the new splicing
rule (A, p,q, A) gives a word that still contains the auxiliary symbols ¢ and p.
We will explain that, at least for self splicing with a regular initial language,
this is not caused by this particular construction: the family Sy (REG, FIN) is
strictly contained in the family S,f(REG,REG). This can be proved using the
language from the following example.
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Example 5.1 Counsider the splicing system h = ({a, b}, L, R) defined by

L = a*ba*ba* € REG
Z(R) = ba*#bS#ba*b € REG

When splicing in self splicing mode, the only rule that is applicable to a‘ba™ba™
is ba™#b$#ba™b, which gives as result a’ba™ba™ba". Hence

o (h) = {a’ba™ba™ba™ | £,m,n > 0} € Sy (REG, REG).

a

Let (u1,v1,u2,v2) be a splicing rule. Since in the case of self splicing both
splicing sites can be found in the same string, the input string can be written
as zyz, where either u; € Suf (z), v; € Pref (yz), ug € Suf (zy), v € Pref (2)
and the result of self splicing is zz, or u; € Suf(zy), v; € Pref(z), uy € Suf(z),
vy € Pref (yz) and the result of self splicing is xyyz. Note that the situation
where the two cutting points coincide is covered by both the first and the second
case (y = A and the result of the splicing equals the input string).

We will show that K = {a‘ba™ba™ba™ | £,m,n > 0} cannot be created
by self splicing a regular initial language using only a finite number of rules.
The idea behind the proof is similar to that behind the proof of a*ba*ba* ¢
H(FIN,FIN) (see Example 3.5): with a finite number of rules either one cannot
control the number of b’s in the resulting string, or one cannot get the desired
numbers of a’s in between the b’s.

Theorem 5.5 S (REG,FIN) C S (REG, REG)

Proof. The inclusion S, (REG, FIN) C S, (REG, REG) follows from the defini-
tions. We show that the language K = {a‘ba™ba™ba" | £,m,n > 0} from the
previous example is not in S, (REG, FIN).

Suppose that h = (V, L, R) is a splicing system with L € REG, R finite and
os(h) = K. Since R is finite we can define k¥ = max{|u;| | 7 = 1,...,4 and
(u1,u2,u3,u4) € R}. Let w be a word in o (h).

First, observe that if w = zz, where (zyz, zy=z) F 32 for a word zyz € L,
a splicing rule 7 = (uj,vi,u2,v2) € R with u; € Suf (z), v1 € Pref (y2),
ug € Suf (zy) and vy € Pref (z), then this splicing can be simulated by a GsM
that, on input zyz, reads and outputs z, reads y without generating output,
and reads and outputs z, while at the same time checking that wi, vy, u2, ve
appear in the right places. Since the initial language is regular and since REG
is closed under GSM mappings, this way of splicing leads to a regular language
(let us call this language Ky,). However, the language K is in CF — REG, hence
it cannot be defined with only this kind of self splicing. In fact, to create K
we need an infinite number of self splicings of the other kind, i.e., there are
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infinitely many words w € o4 (h) — Ky, with w = zyyz for some zyz € L such
that (zyz,zyz) = zyyz, where r = (u1,v1,u2,v2) € R and u; € Suf (zy),
vy € Pref (2), ug € Suf (x), vo € Pref (yz). This is caused by the fact that
K — Ky, must be infinite, since if it were finite, then (K — Ky,) U Ky, = K
would be regular.

Since Ky, C K is regular, it must hold that K, C {albaibaiba” | £,m >0
and 0 <7 < m} for a certain m > 0. Then K — K, should contain at least all
words of the form a’ba‘ba’ba™ with £,n > 0 and i > m.

Hence there exists a w = a‘ba™ba™ba" € K with ¢,m,n > 2k, and such
that w = 2zyyz as described above. Then either y = a? with p > 1 or y = a’ba’
with 7,5 > 0, because w contains exactly three b’s and y occurs twice in w.

If y = aP, then the two (adjacent) copies of y occur inside one of the four
groups of consecutive a’s in w. We discuss one of these cases in detail, the
other cases can be handled in a similar way. Suppose that z = a4, for some
q >0, and that z = a*~972Pba™ba™ba" (hence zyz = a'~Pba™ba™ba™). Let r =
(u1,v1,u2,v2) € R be such that (zyz, xyz) - zyyz = w. Then u; = ' and
Uy = ab, for 0 < 44,45 < k, while for v1 and vy four combinations are possible:
either v1 = a™ with 0 < ny <k, or v1 =a"ba™ for 1 <my+1+4+ny <k, and
either vo = a™ for 0 < ng < k, or vo = a™ba™ for 1 < ng+1+n4 < k. Now
also the following self splicing of zyz using r is possible:

(a"Pba™ba™ 1" | a™ba™ | o TP 202 | 0" ba™ b ba" )

F 6 Pba™ba™ M b ba M ba

for which the resulting string contains too many b’s.

If y = a'ba’ with i,j > 0, then either z = o~ and z = a™ 7ba", or
z = a’ba™ " and z = ¢™J. In both cases the input word can be reconstructed
as zyz = a'ba™ba™. Again we only discuss one of the two cases, the other one
is analogous. In the second case, v1 = ™' for 0 < ny < k, and either u; = att
for 0 < ¢ < k or u; = a®ba’t for 1 < 9 + 14 ¢; < k. For the second splicing
site, it is enough to know that it cuts the input word between a‘ba™ ¢ and
a™ Jba™ (note that m =i + j). Now the following self splicing is possible:

(a‘ba® | a™a™ 1 ba" | a'ba™ " | a™Tba" ) Y atba™ I ba

for which the resulting string has less than three b’s and thus does not belong
to K.

Hence there is no way of choosing x, y, z such that exactly each string in K
is the result of self splicing zyz using a rule from the finite set of splicing rules
R. Consequently K € Sy (REG,REG) — Sy (REG, FIN). O
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5.4 Length-decreasing splicing

When splicing in length-decreasing mode, the resulting string should be strictly
shorter than the input strings. For the input strings xjuiv1y1 and zausvays,
spliced using the rule (u1,v1,u2,v2), and the resulting string zjujvoys this
condition can also be written as |ziu1| < |zaug| and |vays| < |viyi|. Therefore
the construction that we used in the case of unrestricted (and same-length)
splicing to replace a regular set of splicing rules by a finite one, i.e., marking the
cutting points in the input strings with extra, new symbols and cutting those off
by splicing, does not work here: the relation between the lengths of the input
strings and the length of the resulting string is disturbed. Fortunately this
can easily be repaired: like we have seen before, when ziuiv1y1 and zougvoys
are spliced using the rule (uq,v1,u2,v2), the substrings v1y; and zous do not
appear in the result. Therefore we can replace the first letter of v;y; and the
last letter of zous by the new symbol and again remove these new symbols
by splicing. Indeed, these two letters exist, because when splicing in length-
decreasing mode it has to be that |v;y;| > 0 and |zouz| > 0, since otherwise it
can never be that |viy1| > |vaye| and |xoug| > |z1u1]|, respectively. Therefore,
the replacement construction described above works for every pair of words
from the initial language that can splice in length-decreasing mode.

Since only the lengths of v1y; and zouy are important, we simplify the
construction by replacing each symbol in these two strings by ¢, where ¢ is a
new symbol.

Note that a consequence of the above discussion is that the empty word
cannot be a term in any length-decreasing splicing. Therefore, contrary to the
situation in Theorem 5.3, here we can use a (non-erasing) GSM to perform the
construction proposed above.

Theorem 5.6 Let F be a family of languages closed under non-erasing GSM
mappings. Then Sge(F,FIN) = Sg.(F,REG).

Proof. It is clear that Sg.(F,FIN) C Sg.(F,REG). For the converse inclusion
we use the following construction.

Construction. For a splicing system h = (V,L,R) with L € F and Z(R) =
L(A) for a deterministic finite automaton A = (Q,V U {#,$},0,qo, F) with
QN(VU{#,8$}) = g and #,$3 ¢ V, we construct a splicing system h' =
(VUQ,L' R as follows:

L = {xum'”y‘_l | zuvy € L, vy # A and 0(qo, u#v) =p }
U
{ 24" vy | zuvy € L, zu # X and §(q, u#v) € F }
R = {(\p,g;N) | (p,9) =g}
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Correctness. 1t is clear that R’ is finite.

Furthermore, the new initial language L’ can be constructed from L by a
non-deterministic non-erasing GSM mapping that uses 4. For example, when
computing zupd!?~! from zuvy the GSM guesses the start of the segment u on
its input and simulates A on this segment (all the time copying the input to
the output). At the end of u, it simulates the step of A on # and writes p to
the output, where p is non-deterministically guessed. The GSM now continues
to simulate A on the input, writing a symbol ¢ to the output for all but one of
the remaining symbols of the input, while checking whether state p is reached
after reading v in A. Some care has to be taken here. By definition, a GsMm
cannot use a A-transition to simulate 4 on the additional symbol # that is not
part of the input. As a solution, the GSM may keep in its finite-state memory
the values of both d(qg,u’) and 6(qo,u’#) for the prefix u’ of u that has been
read. Since F is closed under non-erasing GSM mappings, L' is in F.

Moreover, from the discussion above and the similarity of this construction
to the construction used in the proof of Theorem 5.3, it is clear that o4 (h') =
o de(h)- O

5.5 Length-increasing splicing

Two strings x1u1v1y1 and zausv2y2 can only yield the string xjujveys as the
result of splicing in length-increasing mode using the rule (ui,v1,us2,v9) if
|z1u1veys| > |Tiusviy;| for @ = 1,2. These two requirements can be simpli-
fied to |ziu1| > |zous| and |vays| > |viyi|, which immediately implies that it
always must be that |z1u;| > 0 and |vays| > 0. Note that this means that
the shortest words that can be made by length-increasing splicing are of length
two, and the only way to create such a word, say ab, where a and b are symbols,
is (a |, | b) Fi" ab, with r = (c1, A\, A\, c2) for ¢; € {\,a} and ¢z € {\,b}. This
consequence of the requirements for splicing in length-increasing mode causes
the fact that there are finite languages (apart from finite languages containing
words of length one) that are not in S, (F1, F2) for all Fp, Fa, as explained by
the following example.

Example 5.2 We show that {bb, bab} ¢ S;,(RE, RE).
Suppose that {bb, bab} = oy, (h) for a splicing system h = (V, L, R) witha,b € V
and arbitrary L and R.

First, observe that, as described above, the only possibility to create bb by
the length-increasing splicing of two initial words is the following: (b |, | b) "
bb, with r € {(c1, A\, A\, e2) | c1,c2 € {\,b}}. Note that this means that the word
b should be in L.

Second, to create bab we need a splicing of the form (ba |, ¢ | b) " bab
or (b|ec,|ab) ™ bab, where ¢ € V U {A}. Thus it must be that ba € L or
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ab € L. Then, using the rule r described above, we have (b |, | ba) F™ bba or
(ab |, | b) F" abb. Both these words are not in {bb, bab}. O

In a similar way it can be proved that {bab} ¢ S;,(RE,RE). Note, however,
that {bb} = o;n(h) for h = ({b}, {b},{(b, A\, \,b)}. Anyway, small words seem
to cause problems when splicing in length-increasing mode. Indeed, any reg-
ular language that does not contain words of length three and smaller is in
Sin(REG, FIN), as demonstrated by the following example.

Example 5.3 Let K € REG, with K C X* for an alphabet 3. Now let h =
(V, L, R) be the splicing system defined by

V. = X U {(ab),[ab] | a,b € X}
L = {w-(ab) | wab € K for some a,b € X} U {[ab]-ab]|a,bec X}
R = {(\,(ab),[ab],\) | a,b € X}

It is easy to construct a GsM that transforms K into {w - (ab) | wab € K for
some a,b € ¥}, and since REG is closed under GSM mappings and under union
with finite sets we have L € REG. Then the only splicings possible are of the
form (w | (ab), [ab] | ab) F wab € K, which is in length-increasing mode if and
only if |w| > 1. Clearly o4y, (h) consists of all words of K that have length at
least four, thus for each regular language M that consists of words with length
at least four we have M € S;,(REG,FIN). O

Contrary to length-decreasing splicing, for length-increasing splicing it may be
that |viyi| = 0 or |zous| = 0, thus the replacement construction we used there
to reduce the regular set of rules to a finite one will not always work here.
We did not succeed in finding a different construction that does always work,
but we can adapt the replacement construction in such a way that the only
words the new splicing system (with finite rule set) cannot create by splicing in
length-increasing mode are words of length two or three. In view of the above
examples this seems a reasonable restriction.

Theorem 5.7 Let F be a family of languages closed under non-erasing GSM
mappings. Then for every language K in Si,(F,REG) the language K|.3 is in
Sin(F,FIN).

Proof. Let h = (V, L, R) be a splicing system with L € F and Z(R) = L(A)
for a deterministic finite automaton A = (Q,V U{#,$},0,qo, F) with @ N (VU
{#,%}) = @ and #,$ ¢ V. We construct a splicing system h" = (V" ,L" R")
with finite rule set that defines a language ‘almost’ equal to o;,(h) as follows.
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First attempt. We start by defining a splicing system ' = (V UQ, L', R') with

L = {xupﬂ”y‘_l | zuvy € L, |vy| > 1 and §(qo, u#v) = p} U
{zup | zu € L and 0(qo,u#) =p} U
{ 2= g vy | zuvy € L, |zu| > 1 and §(q, u#v) € F} U
{quy | vy € L and 6(q,#v) € F'}

R = {(\paN)|dp8) =q}

As before, L' can be constructed from L by a non-deterministic non-erasing
GSM mapping, and R’ is finite.

It is easy to understand that o;,(h') C oy, (h), following the construction
of I' and R'. If 2/ = zyuipl® and y = fquoys in I/, for suitable k& and ¢,
splice in increasing mode to give z = xjujvsy9 using the rule ' = (A, p,q,\) in
R, then there are strings * = xju1v1y; and y = Tousvays in L that splice to
give again z using rule r = (u1, vy, u2,v2) in R. By construction (|z| = |z/|, or
|z| = |2’| — 1 when |viyi| = 0) we know that |z| < |2'|, thus |z'| < |z| implies
|z| < |z|. Mutatis mutandis, this argument is also valid for y and ¢/, so z and
y splice in length-increasing mode as well.

The reverse inclusion o, (h) C 0, (k') in general is not true: assume that
z € ojp(h), for x = zyuivy) € L, y = xougveys € L and r = (uy,v1,u,v2) € R
with (z,y) FI" z1uivoye = 2, Le., |z1ui| > |zous| > 0, |vaya| > |viyi| > 0 and
d(qo, ur#v1) = p, (p,8) = q, 0(q,us#ve) € F. If |uyy1| > 1 and |zoug| > 1,
then there are «/ = zyuipd" 1=t € I/, o/ = J#2%l"lgyy, € L' and v =
(A, p,q,\) € R with (2',y') b/ 21u1v9y2, which is in length-increasing mode
since |z'| = |z| and |y'| = |y

However, there are three cases in which z cannot be created by a length-
increasing splicing in h':

(1) Suppose that |viy1| = 0 and |zoug| > 1. Then there are strings ziu1p
and (/72%2[~1guyy, in L' and a rule ' = (\,p,q,\) € R’ such that (zju; |
p, dr2u2l-lg | voy2) Fp T1u1v2y2, which is in length-increasing mode if |z1u;| >
|zaus|, which follows from the original splicing (z,y) ™ z, and |veya| > |p,
which is only the case when in the original splicing indeed |vays| > 1. This
means that original splicings with |viy1| = 0 and |veye| = 1, i.e., (z1u1 |, zousg |
a) F™ xyuja for an a € V, cannot be simulated in A’ (recall that |voys| = 0
cannot occur when splicing in length-increasing mode).

(2) Suppose that |zoua| = 0 and |viy;| > 1. Following a similar reasoning it
can be shown that original splicings with |z1u1| = 1, i.e., (a | viy1, | v2y2) pim
avyys for an a € V', cannot be simulated in A'.

(3) Suppose that |viyi| = |zouz| = 0. Then an original splicing (ziu; |, |
vay2) F™ T1uivays can only be translated to (ziui | p, q | vayz) l-i’? T1ULV2Y2
if |zqu1| > 1 and |vay2| > 1. Hence we cannot simulate original splicings with
|z1u1| =1 or |uays| = 1.
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Second attempt. In order to accommodate almost all these cases we add ad-
ditional strings to the initial language L' and corresponding new rules to R'.
Define " = (V" L",R") as

V” = Vu Q U {(a—p), <a+p>a <q_a>7 <q+a> | ac Va p,q € Q}
" = L'u
{w(a—p) | wa =zu € L, a € V and 0(qo,u#) =p} U

{#=2(g+a)ab | zub € L, |zu| > 2, a,b € V and
d(q,u#) € For 0(q,u#b) € FF } U
{bala+p)™1=? | boy € L, |vy| > 2, a,b € V and
6(qo, #v) = p or 0(qo, b#v) = p} U
{{g—a)w |aw =vy € L, a € V and 6(q,#v) € F }
R'" = R U
{(A (a=p), {g+a), ),
(A {a+p), (g=a),A) | d(p,8) =gand a €V}

Intuitively, the symbol (a —p) signals that a symbol a was removed to code
state p, whereas (¢+a) indicates state ¢ and the addition of symbol a.

Again, L" can be constructed from L by a non-deterministic non-erasing
GSM mapping, and R" is finite.

The new strings and new rules can only splice among themselves, and sim-
ulate most of the remaining splicings of the original system (with regular rule
set): let us reconsider the three cases that did not work in A'.

(1) Translating the original splicing (zyuy |, Touz | @) ™ z1u1a now gives
(w | (b—p) , /*2%21=2(q4-b) | ba) F wba = z,uya, which is in length-increasing
mode if and only if |w| > |zaug| — 1. This means that it should be that
|z1ui| > |xousz| and that follows from the original splicing. Hence all problems
in case (1) are solved.

(2) Analogously, all problems in case (2) are solved.

(3) Translating the original splicing (a |, | vay2) F* avoys, for an a € V,
gives now (ab | (b+p), (¢g—b) | w) I abw = avyys, which is in length-increasing
mode if and only if |w| > 1, ie., |vayz| > 2. Similarly, the other ‘problem
splicing’, (z1u1 |, | @) F z1u1a can only be translated to A" if |zjuq| > 2.

Consequently the only original splicings that cannot be simulated by h” have
|zoug| = |viyi| = 0 and |ziui| = 1 while 1 < |vaya| < 2, or |zoug| = |viy1] =0
and |vaye| = 1 while 1 < |zjup| < 2. All these cases yield words of length two
or three. O
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5.6 Summary

We have investigated the transition from regular rule sets to finite rule sets.
As a result of that investigation we have given direct proofs for five equalities
that are implicit in Table 3.1, i.e., S(F,FIN) = S(F,REG) for F # LIN, and
for one new equality: S(LIN,FIN) = S(LIN,REG). Moreover, we have given a
characterization of S(LIN, FIN) and S(LIN, REG), for which no exact position in
the Chomsky hierarchy was known yet: S(LIN, FIN) = S(LIN, REG) = LIN®LIN.

In the cases of same-length and length-decreasing splicing we could also
prove that regular rule sets may be replaced by finite ones, while for self splicing
we have shown that this is not even the case when starting with a regular initial
language: S, (REG,FIN) C S,/(REG,REG). For length-increasing splicing we
proved that for each system A with a regular rule set there exists a system A/
with a finite rule set such that o(h') consists of all words of o(h) that have
length at least four. This means that S;,(F, FIN) = S;,(F, REG) provided that
we do not consider words shorter than four symbols.

Since the families given in Table 3.3 are upper bounds and not (necessarily)
characterizations, the above mentioned (in)equalities for restricted splicing are
all new.



Chapter 6

Upper bounds for restricted
non-iterated splicing

As we have discussed in Section 3.3, for restricted non-iterated splicing sev-
eral families S, (Fi, F2) still have unknown smallest upper bounds within the
Chomsky hierarchy. We determine these upper bounds for non-iterated splic-
ing in length-increasing, length-decreasing, same-length and self splicing mode,
and we improve some of the known upper bounds.

The open problems indicated in Table 3.3 involve either a regular initial
language and context-free splicing rules, or vice versa. For unrestricted non-
iterated splicing the upper bounds for these two cases are determined in Lemma
3.3 and Lemma 3.6 of [HPP97]. We use the ideas from the proofs of these two
lemma’s to define, for each splicing system h = (V, L, R), the language C(L, R)
that combines the initial language with the rules:

C(L,R) = { ziwi#vniy1Svous#vayz | ziuiviyr , s2ugveye € L
and w1 #viSus#Hve € Z(R)}.

This language turns out to be very helpful in determining upper bounds for
restricted splicing families. Note that o(h) = ¢g(C(L, R)), where ¢ is the GSM
mapping that erases the two #’s and everything in between from each word in
C(L,R).

Consider the two cases mentioned above, i.e., let L € F; and Z(R) € Fa,
with {1, Fo} = {REG, CF}. Using substitution of $ with the regular set V*$V*
and concatenation on both sides with the regular set V*, the language 2 (R) is
transformed into the language R’ = {z1ui#v1y1$zous#voys | ui #v1Sus#ve €
Z(R) and z1,y1,z2,y2 € V*}. Furthermore, using shuffle with symbols and
concatenation, the language L' = {z#ySw#z | zy, wz € L} can be constructed
from L. Since both REG and CF are closed under these four operations, we
either have L' € REG and R' € CF, or L' € CF and R' € REG. Clearly
C(L,R) = L' N R', which is a context-free language since CF is closed under

63
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intersection with regular sets. This argument shows that both S(REG, CF) and
S(CF,REG) are subfamilies of CF (cf. Table 3.1). In this chapter we seek to
extend this argumentation to restricted splicing.

6.1 Same-length splicing

As can be seen in Table 3.3, for Sg(Fy,F2) with F; = LIN,CF and Fy =
FIN,REG it is only known that all four families contain a non-context-free
language, as shown by the following example.

Example 6.1 Let h = ({a,b,c,d}, L, R) be the splicing system defined by

L = {a"V'd|n>1} U {db"" |n>1} € LIN
Z(R) = {a#bSd#b} € FIN

The form of the rules causes the first term of each splicing to be of the form
a*b*d, and the second term of the form db’/¢/, for some k,j > 1. Moreover, if
we consider same-length splicing, we should have & = j. Then (a* | bd , d |
brck) ot akbF ek, using the only splicing rule in R. Consequently

og(h) = {a"0"¢" | n > 1}

which is not a context-free language. O

It is an open problem whether the smallest upper bound of Sy (Fi, F3) in the
Chomsky hierarchy is CS or RE, for F; and F» as above, and for F; = REG
and Fy = LIN, CF. We solve this by proving that all languages in S5 (REG, CF)
and Sy (CF,REG) are context-free valence languages over Z! and thus context-
sensitive (see Section 2.5).

Theorem 6.1 S, (REG, CF) C CF(Z!) and Sy (CF,REG) C CF(Z1).

Proof. Let h = (V, L, R) be a splicing system of (REG, CF) type or (CF, REG)
type. As described before, the language C(L, R) = { z1u1#v1y18z2us#voys |
T1u1v1Y1 , TougVeys € L and uy#viSusFvy € Z(R)} is context-free.

Now o4 (h) = 74(C(L, R)), for the Z!'-transducer 7, that transforms the
string xjuy #v1y1$zousFveys € C(L, R) into z1ujveye while at the same time
checking whether |z1uiv1y1| = |z2ugvays|: it adds 1 for each symbol of z1uiv1y1,
it subtracts 1 for each symbol of zouoveys, and it copies z1uy and voys to the
output.

Since CF = CF(Z°) and since (as shown in Section 2.5) applying a Z*
transduction to a CF(ZF) language gives a CF(Z**¢) language, we have o4 (h) =
74(C(L, R)) € CF(Z'). O
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This result enables us to fill in six of the missing entries in Table 3.3:
S4(REG, F2) C CF(Z?) for F» = LIN, CF, and
Sq(Fi,Fe) C CF(ZY) for F, = LIN, CF and F, = FIN, REG.

6.2 Splicing in n or de mode

First, we give an affirmative answer to a question asked in [KPS96, p.238]: does
Sin(REG, LIN) contain a non-context-free language? We do this by adapting an
example given in the proof of Lemma 10 from that same paper.

Example 6.2 Let h = ({a,b,c}, L, R) be the splicing system defined by

L = cb'a"b'c € REG
Z(R) = {cb™a"#b"cSc#b™c| m,n >0} € LIN

The only splicings possible using the rule cb™a™#b"c$c#b™c are of the form
(cd™a™ | b"c, c | b™c) F cb™a™b™c. If the splicing has to be done in length-
increasing mode, then we must have m+n+1>1and m+1 > n+ 1 (recall
that the requirements |ziujvoys| > |z1uiv1y1] and |z1uiveys| > |Tougvays| can
be simplified to |vaya| > |viy1| and |ziui| > |z2usg|, respectively), hence

oin(h) = {cb™a"b"c | m,n >0 and m > n}

which is not a context-free language. O

Hence we have the following result.
Lemma 6.2 S;,(REG,LIN) — CF # @

Similar to the case of same-length splicing, we prove that both S;,(REG, CF)
and S;,(CF, REG) are subfamilies of CF(Z?). For S;,(REG, CF) this answers the
question whether the smallest upper bound in the Chomsky hierarchy is CS or
RE, whereas for S;,(CF,REG) this improves the known upper bound CS.

Theorem 6.3 S;,,(REG, CF) C CF(Z2) and S;»(CF,REG) C CF(Z2).

Proof. Let h = (V, L, R) be a splicing system of (REG, CF) type or of (CF, REG)
type. Construct the context-free language C(L,R) from L and R as be-
fore. Now a non-deterministic Z2?-transducer 7, can transform each word
z1u #H#u1Yy18T2usH#veys € C(L, R) for which |xjuy| > |zoue| and |vays| > |viyr]
to x1uivoye. To compare the lengths of z1u; and xaus it uses its ‘first counter’
as follows: for the first letter of zyu; (note that, because of the requirements
for in splicing, z1u; has to be non-empty) it adds 0, for each other letter of
z1uy it non-deterministically adds 0 or 1, hence for zu; an amount a < |zjuq|
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is added. For each letter of zouy it subtracts 1, hence an amount 8 = —|zqug)|
is added. At the end of the computation this component of the counter has
to have the value 0, which means that o + 8 = 0, i.e., @ = |zgusy| and thus
|zoug| < |ziui|. The lengths of v1y; and vays are compared in an analogous
way, using the second counter.

Clearly then oy, (h) = 7;,(C(L, R)) € CF(Z?). O

We can now fill in two entries of Table 3.3 and improve four of the upper bounds
given there:

Sin(REG, Fy) C CF(Z?) for F» = LIN, CF, and

Sin(F1,Fa) C CF(Z?) for F; = LIN,CF and F, = FIN, REG.

The problem whether length-decreasing splicing of a regular initial language
and a linear set of rules can yield a non-context-free language is also open
([KPS96]), and again it can be solved by adapting an (other) example given in
the proof of Lemma 10 in [KPS96].

Example 6.3 Replace the initial language of Example 6.2 by

L' = cb*a*d*c U c*b*c € REG
and let A’ = ({a,b,c}, L', R) with R as in Example 6.2. Now the only possible
length-decreasing splicings are (cb™a” | b"c, cfc | b™c) F% cb™ab™c, where
l+m4+n<f+1land m+1<n+1, thus

oge(h') = {cb™a"b™c | m,n > 0 and m < n}

which is not in CF. O

Consequently we have the following result.
Lemma 6.4 S;.(REG,LIN) — CF # @

Clearly the constructions for in splicing can be adapted for de splicing, which
gives the following theorem.

Theorem 6.5 Sy, (REG, CF) C CF(Z2) and Sq(CF,REG) C CF(Z2).

Again, this gives the more general results
S4.(REG, Fy) C CF(Z?) for Fy = LIN, CF and
Sge(F1, Fa) C CF(Z2) for F; = LIN, CF and F» = FIN, REG.
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6.3 Self splicing

Self splicing linear or context-free initial languages with finite or regular rules
can give a language outside CF, but can it also yield a non-context-sensitive
language? We prove that the answer to this question is negative. We start by
illustrating that even the self splicing of a regular initial language with a finite
set of rules can lead outside CF.

Example 6.4 (See also [PRS98, proof of Theorem 11.1].)
Let h = ({a,b,c,d}, L, R) be the splicing system defined by

L = ab'cd € REG
R = {#dSa#} €FIN

Then (ab™c* | d,a | bc*d) F* ab™cFb™cFd and thus
o5t (h) = {ab™cF ™ cFd | m,k > 0}

which is not context-free. O

Theorem 6.6 S, (CF,REG) C CS

Proof. Let h = (V, L, R) be a splicing system with L € CF and Z(R) € REG.
We show how to obtain an LBA that can check whether a word on its input tape
belongs to oy (h) or not. Since the languages accepted by LBA’s are exactly
the context-sensitive languages, this proves that Sy (CF,REG) C CS.

As explained in Section 5.3, o (h) can be described as Ly, U Lyyy,, where

Ly, = {zz|zyz € L with u; € Suf(z),v; € Pref (yz),
ug € Suf (zy), vy € Pref (z) for a (u1,v1,us,v2) € R} and
Lyyy, = {zyyz|zyz € L with u; € Suf (zy),v1 € Pref (z),
ug € Suf (x),ve € Pref (yz) for a (uy,v1,u2,v2) € R}.

Let w be the word that is on the tape of the LBA at the beginning of its

computation. The LBA starts by guessing that w belongs either to Ly, or to
Lyyys-

In the case of Ly, let 1 and 2 be symbols not in V' and let L; = {zly2z |
xyz € L with uy € Suf (z),v; € Pref (yz),us € Suf (xy),vs € Pref (z) for a
(u1,v1,u2,v2) € R}. Note that L; can be obtained from L by a GSM mapping
similar to the GsM mapping described in the proof of Theorem 5.5 (but this one
has to search for the two cutting points simultaneously, because the splicing
sites wjv; and wugvy can overlap and the GsM is not allowed to go back on its
input). Moreover, Ly, can be constructed from L, also by a GSM mapping.

This means that there exists a context-free grammar G with L(G) = Ly,. Now
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the LBA can check whether w € L(G) by simulating computations of G on its
‘second track’.

In the case of Lyyy,, the LBA guesses a non-empty subword y and checks
whether w = xyyz and whether the splicing sites u;v; and ugve occur in the
right places. If so, then it may mark (or erase) each letter in the second copy of
y, and then check whether the rest of w, i.e., zyz, belongs to the context-free
language L. O

Hence we have S (F1,F2) C CS for 71 = LIN, CF and F» = FIN, REG. In fact,
this upper bound can be improved to the family 2DGSM(CF), which is a strict
subfamily of CS (see [HV02]).

Example 6.4 implies that also self splicings of (REG, LIN) type and (REG, CF)
type can yield languages outside CF. We prove that they can even define non-

context-sensitive languages, i.e., we prove that the smallest upper bound in the
Chomsky hierarchy of S,(REG, CF) and Sy (REG, LIN) is RE.

Lemma 6.7 Let Ly, Ly be linear languages over X and let 0 be a symbol not
in 3. Then 0Li/Ly € Sg(REG, CF).

Proof. Assume that Ly and Ly are linear languages with Ly, Lo, C ¥* for some
alphabet 3. Let 0,1,2 ¢ ¥ be new symbols, and define h = (X U{0, 1,2}, L, R)
by

L = 0X"1X*2 € REG
Z(R) = {0u#1v281w2# |uv € L1,w € Ly}

Since LIN is closed under concatenation with symbols and under shuffle with
strings (but not under concatenation) we have 2 (R) € LIN - LIN C CF.

We start by proving that oy (h) C 0Ly/Ly. Let z € L and (z,2) b 2
for an r = (Ou, lv2,1w2,\) € R. Then because of the form of the axioms
and the first splicing site we must have £ = Oulv2. Moreover it must hold
that 1v2 = 1lw2, i.e., v = w, because we are considering self splicing. Clearly
(Ou | 192, Oulv2 |) F oy = 0u € 0Ly /Ls, since uv € Ly and v = w € Ly by
construction.

Now take z € L;/Lo, i.e., there is a y € Ly such that zy € L. According
to the definition of A there is a splicing rule r = (0z,1y2,1y2,\) € R and an
axiom 0z1y2, and so (0z | 1y2, 0z1y2 | ) =, 0z € o4 (h). O

Since every RE language can be written as the quotient of two linear languages
([LLR85, Proposition 13]), Lemma 6.7 implies the following.

Corollary 6.8 Let K be o language over % and let 0 be a symbol not in 3. If
K € RE, then 0K € Sg(REG, CF).
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Since CS is closed under quotient with symbols, 0K € CS would imply K € CS.
Consequently K € RE — CS implies 0K € RE — CS, thus the smallest upper
bound in the Chomsky hierarchy of Sy (REG, CF) is RE, as formulated in the
following theorem.

Theorem 6.9 S, (REG, CF) contains languages from RE — CS.

The same result holds for S, (REG,LIN), i.e., we can give a construction that
uses a set of rules R with Z(R) € LIN instead of the set R from the proof
of Lemma 6.7, for which Z(R) € LIN - LIN. We do this by reconsidering
the above mentioned proof that every recursively enumerable language is the
quotient of two linear languages. In the following example we use the main
idea of that proof: one step of a Turing machine can be captured by a linear
grammar, provided that we represent one of the two configurations involved
by its mirror image. This idea originates from [Har67], where it is shown that
every recursively enumerable set is the quotient of two context-free languages.

Ty € AgqorB*B

R
( R W
Oz# 1z ... Tk Tpy yf.. F281 2129 ... 2041 xk...xl Fo#
yo"hj
y1 b 2o
Yo & 2o

Figure 6.1: The structure of strings in K (Example 6.5)

Example 6.5 Let M = (Q,%,T,6,q, B, F) be a Turing machine. For this
example we write the configurations of M as strings of the form AT™*QI'*B, for
new symbols A and B. We extend the notation k4 for computational steps of
M to this way of writing configurations.

Let the language K consist of the words

Oz # 1y .aptpyr Yooyl ul 28121 20 20y 2l alall 2 #

where 0,1,2,#,$ are new symbols,
for a string w, w® denotes the mirror image of w,
x € X,
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L0y e ey Thtls Y0y- vy Yly 21,y --- 2041 €EAL* QLI B, for k,¢ > 0,
Yi |_./\/l Zi+1 for 0 SZSK,

o € Agoz B* B, and

ZTr1 € AI'* FI*B.

So each xf,xi+1,yf,zj+1, where 0 < ¢ < k and 0 < j < 4, is (the mirror
image of) a potential configuration of M, and we use the new symbols A and
B to separate them from each other. A picture may clarify the situation: see
Figure 6.1.

K is a linear language, generated by the following grammar. The start
symbol is S, a,b,c range over I', d € X, f € F and p,q € Q.

S — 0T2# U — aUa|pU'p

T — T'qoA U"— aU"a|BUB

T — dT'd|T" V — AV’

T" - T"B|#1UB Vi aV'| fV"

U — AU A |V V"= aV"|BW

W — BW'B

W — BapW"bgBB if (p,a,q,b,R) € 6

W' — aW'a

W' = apcW"qch if (p,a,q,b,L) € 6

W' — apAWAqBb|apa281AgBb if (p,a,q,b,L) €4

W' — apW"bgq if (p,a,q,b,R) € 6

W' — apW"qb if (p,a,q,b,N) €0

W"— aW"a | AWA|A2$1A
Here T creates z # 1 and acéz, U generates x; and xfz foreach i e {1,...,k}, V
derives x4 and W generates yl-R and z;y1 for each 7 € {0,...,¢}. Note that,
since a, b and ¢ may also stand for the blank symbol, we can get configurations
with a lot of unnecessary blanks, but we do not miss any configuration. O

Theorem 6.10 Let K be a language over ¥ and let 0 be a symbol not in 3.
If K € RE, then 0K € Sy (REG,LIN).

Proof. Construction. Let K = L(M) for a deterministic Turing machine
M = (Q,%,T,0,q0, B, F), and let Kpq be the linear language as defined in

Example 6.5. Now o4 (h) = 0K, for the splicing system h = (V, L, R) defined
by

V =T U{0,1,2} UQ U {a,B}
L = 0¥1(TUQuU{a,B})"2 € REG
Z(R) = Kpy € LIN

where 0,1,2 ¢ 'UQ U {A, B}.
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Correctness. The splicing rules of h are of the form

0x ‘ lxl...xk+1yf...yfzy§2

Lzp..ozpp ol afall 2 ‘

with x1,...,Zk+1,90,---,Ye, 21, .-+, 2001 € AI"QT¥ B, 290 € Aqyx B*B and
Yi I_M Zi+1 for 0 S 1 S 2

Because of the form of the initial strings and of the rules, the first term of
the splicing must be of the form Oz 1z; ... 2k yf“ -.yftylt2. Since we consider
self splicing, this is also the second term. The second splicing site now enforces
the equality

T1.w - Th+1 yé%y{%y(l)% =21 ---20+1 ka.T{zxoR,
and the marking with A and B ensures that k = ¢, z; = z; for 1 <1 < k+1
and y; = x; for 0 < j < k. Hence xy € Aqgox B* B is the initial configuration of
M for the input word =, x; = y; Fam 241 = iy for 0 <4 < K, and xg4q is the
end configuration of M for z. Thus xp Faq 21 Faq - .- Faq Ty 1S an accepting
configuration sequence for z. Consequently, if 0 z 1 z1... 241 yf“ cyltylt 2
splices with itself to give 0z, then z € L(M).
For the proof in the reverse direction, the above can be read backwards. O

Theorem 6.11 S (REG,LIN) contains languages from RE — CS.

6.4 Summary

We have solved all open problems indicated in Table 3.3, and improved some of
the known CS upper bounds given there. In the following table we summarize
the results on the upper bounds of the four restricted splicing modes that we
considered.

| — | FIN|REG| LN | CF [ FIN | REG |LIN]CF|
f | REG | REG| LIN CF CF CF | RE [RE
in || REG | REG | CF(Z?) | CF(Z?) || CF(Z?) | CF(Z?) | CS | CS
de || REG | REG | CF(z?) | CF(z?) | CF(z? | CF(z?) | RE | RE
st || LN | LIN | CF(zY) | cF(zY) || CF(zY) | CF(ZY) | RE | RE
sf | ¢S] cs| RE RE CS CS | RE | RE
| | F1 = REG | F1=LIN,CF |

Table 6.1: Upper bounds of S, (F1,F2) — updated
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Chapter 7

Definitions, examples and
research topics

7.1 Sticker systems

Sticker systems are introduced in [KP98] as a formal language model for
the self-assembly phase of Adleman’s experiment ([Adl94]). Self-assembly is
the ability of complementary parts of single stranded pieces of DNA to stick
together, thereby possibly leaving an overhanging ‘sticky end’ to which another
part of single stranded DNA can stick, and so on. In this way a (partially) double
stranded piece of DNA is created.

Fully double stranded DNA molecules can be written as a pair of ‘matching’
strings over the alphabet {a,c,g,t} of bases. Alternatively, for the matching
base pairs we may use the symbols @), (;), (g), (%) We appreciate both ap-
proaches, and will not distinguish between a (two-dimensional) pair of match-
ing strands like (agac, tctg) and a (one-dimensional) string of paired bases like

a\ (g) (a) (C
(1) (&) (%) ()

For our purposes we will consider an alphabet ¥ of ‘abstract’ DNA bases,
and a relation p C ¥ x X representing the complementarity relation. We extend
p to a subset of ¥* x ¥* by demanding that two strings are complementary
if they are of equal length and their letters are one by one complementary:
(a1...an,b1...by) € p, for a;,b; € ¥, 1 < i <n,n>0,and 1 <35 < m,
m >0, if n =m and (ag, by) € p for each 1 < ¢ < n.

We define the alphabet X, representing matching pairs of symbols, as con-
sisting of all symbols (';) where (a,b) € p and a,b € X. As explained above, we
identify 327 with the subset p of 3" x ¥*: ('le) . (ZZ) represents the same double
stranded molecule as (aj ...ap, b1 ...by), for (a;,b;) € p and a;,b; € . Note
that thus A € X7 equals (A, A) € p. We will also use (Ziz‘:) as an abbreviation
of (5,) - (57)-

We give a definition of sticker systems that is equivalent to the definition

75
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given in [KPT98], but stated directly in terms of strings, avoiding a lengthy
definition of a ‘sticker operation’. In [FP*98], [PR98] and [PRS98] more general
sticker systems are investigated; the sticker systems from [KP798], which we
consider here, are called simple regular sticker systems in [PR98, PRS98].

Definition 7.1 A sticker system is a 5-tuple v = (X, p, Dy, Dy, A) where ¥ is
an alphabet, p C ¥ x ¥ is the complementarity relation, D,, D, C ¥ are finite
sets of upper and lower stickers, and A C ¥* x ¥* is a finite set of azioms. O

We call a pair (zoZ1...Zn,YoY1-.-Ym) € p a (complete) computation of y if
(zo,%0) € A, Z1,...,%y € Dyand yy,...,ym € Dy, for some n,m > 0. If n. = m,
then (zoxy...Zn, YY1 ... Ym) is called a fair computation of . If there are no
i and j, with 0 <4 <n and 0 < j < m, such that (zoz1...24,yoy1...y;) is a
complete computation of v, then (zoxy ...Zn, Yoy1 - .. ym) is called a primitive
computation. A computation that is both primitive and fair is called primitive
fair. If we do not care about the exact composition of a computation we write
‘(z,y) € pis a computation’, meaning that there are (z¢,yo) € 4, z1,...,2, €
D, and y1,...,ym € Dy such that z = xox1... 2, and y = yoy1 - . . Y. We say
that (zoz1...2,90y1...yj), for some 4,5 > 0, is a partial computation of v if
(mo,yo) €A x1,....,%; € Dy, y1,... yYj € Dy, and if |$0$1 $z| < |y0y1 y]|
implies that there is a w € Pref (yoyi...y;) such that (zozi...z;,w) € p,
whereas |zoz1 ... ;| > |yoyi ... y;| implies that there is a v € Pref (zoz1 ... 2;)
such that (v,yoy1...y;) € p.

Note that in a primitive computation only at the end a so-called ‘blunt end’
occurs — i.e., the end of the computation is the first position where there is no
sticky end — whereas in a non-primitive computation there is additionally at
least one ‘intermediate blunt end’.

Although we are mainly interested in the formal language theoretic aspects
of sticker systems, we keep the analogy with molecules and DNA in mind, and
will often write, for instance, ‘(z,y) € p is a double stranded string’ or ‘z is the
upper strand of (z,y) € p’.

Observe that our definition of computation differs from the one used in the
literature: there a computation is a sequence of what we call partial computa-
tions, where the first element of the sequence is an axiom, the next is an exten-
sion of the previous element with one sticker, and so on until the last element,
which is completely double stranded. In other words, in the literature a compu-
tation is defined both by the axiom and stickers used in it, and by the order in
which the stickers are added. Hence one computation (zox1 ... Zn,Yoy1 - .- Ym)
in our terminology corresponds to several computations according to the defi-
nition from the literature.

In our definition we have abstracted from the order in which stickers are
added to get a complete computation. Indeed, this order has no effect on
the result being a complete computation nor on the fairness or primitivity of
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the computation. Nevertheless, we will sometimes find it useful to think of a
computation as if it was constructed by adding stickers in a certain order.
7.2 Sticker languages

Let v = (X, p,Dy, Dy, A) be a sticker system. The (unrestricted) molecular
language generated by -y is defined as

ML(y) = {(z,y) € p|(z,y) is a computation of v }.
The fair molecular language generated by -y is defined as
MLi(v) = {(z,y) €p](z,y) is a fair computation of v },
the primitive molecular language as
ML,(vy) = {(z,y) € p]| (z,y) is a primitive computation of y }
and the primitive fair molecular language as
MLy(y) = {(z,y) €p](x,y) is a primitive fair computation of v }

Furthermore, the (unrestricted) sticker language generated by < is the projec-
tion onto the first (upper) component of the molecular language,

L(y) = {ze¥"|(z,y) € ML(y) for some y € ¥* }

and analogously for L;(y), L,(v) and L,s(7), the fair, primitive and primitive
fair sticker languages generated by -y, respectively.

Example 7.1 Let v = (3, p, Dy, Dy, A) be the sticker system defined by

Y = {a,b}

p = 1id
D, = {aa,ab}
D, = {aa,b}

A = {(ba,b), (b,ba), (bb,bb)}

Here id denotes the identity relation. Four sample complete computations of +,
given by their upper and lower strand, are depicted below. We have indicated
the beginning and end of axioms with [ and ), respectively, and the beginning
and end of each sticker with ( and ), respectively.

[b)(a b) [b a){a b) [b){aa){a b){aa) [b a){aa)(a b){aa)(aa)
[b-a)p)  [b){aa)(b) [b a){aa)(b){aa) [b)(aa){aa)(b){aa)(aa)
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The first of these computations is both fair and primitive, the second is primi-
tive but not fair, the third is fair but not primitive, and the last one is neither
primitive nor fair. It is fairly easy to argue that

L(y) = ba*b(aa)*

Ly(7) = ba'h

L(y) = baa)*ablaa)” U bbaa)*
Lyr(y) = blaa)ab U bb

a

Example 7.2 Consider the following sticker system, a slight extension of the
one given in the proof of Theorem 3 in [KP98]:
Y= ({a'a ba C}, P Dm Dﬁa A) with

p = {(a’a)v (b7 b)7 (b7 C)}

D, = {aa,b}
D, = {a,bc}
A = {(AN}

All computations of vy are composed of ‘blocks’ that consist either of aa in the
upper strand and aa in the lower strand, or of bb in the upper strand and bc
in the lower strand. Moreover, each of the blocks containing only a’s uses one
upper sticker and two lower stickers, whereas each other block uses two upper
stickers and one lower sticker, as shown below.

[) (@ a) (b)(b) (b)(b) (@ a)
[) {a)(a) (b ¢) (b c)(a)(a)
Hence only one computation of vy is primitive: the one that uses only the axiom.

Furthermore, the only way to make a computation fair is to ensure that it uses
an equal amount of both kinds of blocks. Now clearly

ML(y) = {(*,()

MLy(y) = {X}

MLi(7) = { (%) € ML(Y) | #a(2) = #(2) }
()

= (A}

L(y) = {aa,bb}*
Li(y) = {z € L(y) | #a(z) = #b(2)}
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Obviously, for each sticker system -y, L(y) can be obtained from M L(vy) by
applying a coding. However, we may not reverse this: in general M L(vy) is not
the image of L(7) under an inverse coding, as is clear from Example 7.2.

In this thesis we consider sticker languages rather than the molecular vari-
ants. This can be justified using the following representation result, that implies
that a sticker system y can always be changed into a sticker system «' such that
the sticker language of v/ gives exactly the same information as the molecular
language of +.

Theorem 7.1 For every sticker system v = (X, p, Dy, Dy, A) there is a sticker
system v' = (X,,1id, D,,, D}y, A") such that ML(y) = L(').

Proof. Let hy : ¥ — ¥* be the homomorphism that maps (Z) to a, and let
he : 37, — X* be the homomorphism that maps (%) to b. Note that (z,y) € p

if and only if (i) € hyl(z) Nk, (y). In words, given (z,y) € p, if we guess
a ‘lower strand’ y' complementary to z (using h;') and an ‘upper strand’ '
complementary to y (using hzl), then we have guessed right if and only if

() = (3)-

Construction. We construct ' = (X,,id, D,,, D, A") as follows:

D, = h;'(Dy)
Dy = h;'(Dy)
A = {(z,y) ] (hu(z), he(y)) € A}

Correctness. We start by proving that ML(y) C L(v'). Let (z,y) € ML(y),
ie., (z,y) € p and there are (zg,y0) € A, x1,...,%, in Dy and y1,...,Yn in
Dy, with n,m > 0, such that © = zgz; ... 2, and y = yoy1 . . . Ym- Then x and
y can also be written as follows:

!
m

Y o= YoUr---Yn = YoUi---Ym

T = ToTi...Typ = xf)xllx

where z;,y; as before, (z;,y;) € p and (2%,y;) € p (for 0 < i < mnand 0 <

j < m). According to the definitions of A’, D; and D), this means that

((2); (”y‘?g)) e A, () € D, and (”y‘f;) € Djfor1 <i<nandl<j<m. This

implies that ((52)(5/) - (7). (G2) ) - Gm)) = (), () € ML(Y), hence
() = (2,9) € L(7).

Note that the reasoning above is also valid if read backwards, which proves
L(y") € M L(v), and consequently L(v') = M L(vy). O
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Since the stickers (axioms) of 7' have the same length as the corresponding
stickers (axioms) of -y, the number of upper and lower stickers used in a com-
putation does not change when passing from 7y to 7'. Consequently both fairness
and primitivity are preserved.

Corollary 7.2 For every sticker system v = (X, p, Dy, Dy, A) there is a sticker
system ' = (X,,id, Dy, Dy, A") such that ML (y) = L(y'"), MLy(y) = Lp(v')
and MLy¢(y) = Lyr ().

From Theorem 7.1 we can derive a rather unexpected but useful normal form for
sticker systems: without changing the sticker language, we can always replace
the complementarity relation p by the identity ¢d on the alphabet 3. Note
that, of course, the molecular language does change if p was not already equal
to id.

The idea behind this derivation is the following: instead of guessing dou-
ble stranded lower stickers for the new system starting from lower stickers in
the original system, we can guess just the upper strands corresponding to the
original lower stickers (and similar for the axioms; the upper stickers remain
the same). In other words, we use the same procedure as in the proof of The-
orem 7.1, but we use only part of the answers that result from it.

Theorem 7.3 For every sticker system v = (3, p, Dy, Dy, A) a sticker system
v = (X,id, Dy, Dy, A") can be constructed with L(y") = L(v).

Proof. Construction. Let D), and A" be defined as

D, = {weXt|(ww) € p for some v € Dy}
A" = {(=wo,20) | (w0,y0) € A for some yg, and (z9,y0) € p}

Correctness. Assume that z € L(vy), i.e., there is a y such that (z,y) € p,
T = xoL1...Tp and Yy = Yoyi - . . Ym, where (xg,y0) € A, z; € Dy, for 1 <i<n
and n > 0, and y; € Dy for 1 < 5 < m and m > 0. Then z can also be
written as & = 2921 ... Zm, where (2, yx) € p for 0 < k < m. According to the
definition of A’ then (zo,20) € A’, and from the definition of Dj, it follows that
zj € Dy for 1 < j < m. Therefore (zoz1...%n, 2021 ... 2m) = (z,2) € ML(Y'),
hence z € L(v').

To prove that L(vy") C L(v), the above can be read backwards. O

Obviously, again the number of stickers used and the lengths of the stickers are
not changed, hence the following holds as well.

Corollary 7.4 For every sticker system v = (X, p, Dy, Dy, A) a sticker system
v = (E,id, Dy, D}, A") can be constructed with L¢(y') = L (7), Ly(v') = Lp(7)
and Ly¢(7') = Lyf(7y).
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7.3 Families of sticker languages

The family of all sticker languages is denoted SL, while the families of fair,
primitive and primitive fair sticker languages are denoted SL;, SL, and SL,y,
respectively.

We recall from the literature the results concerning the relations between
SL, SLy, SLp, SL,; and the Chomsky families. We do this rather elaborately,
because we will use some of these constructions later on.

First, SL C REG. When a sticker is added to a partial computation, this
can always be done in the strand opposite to the strand containing the current
sticky end. Therefore, the current sticky end never needs to be longer than
the maximal lengths of the stickers and the two components of each axiom.
Consequently, a finite number of states of a finite automaton, where each state
stands for a specific sticky end, can control the computation in the same way
as the sticky ends do ([KP"98, Lemma 1]).

Second, discarding in the previous construction the transitions that allow a
complete computation to be continued yields a finite automaton for the primi-
tive sticker language of the sticker system under consideration ([KP98, Lemma
2]), hence SL, C REG. Indeed, primitivity is a ‘local’ property, hence easy to
check using the states of a finite automaton.

Example 7.3 Consider the sticker system v given in Example 7.1, that has
upper stickers aa and ab, lower stickers aa and b, and axioms (ba,b), (b, ba)
and (bb, bb). From the definition of v we derive that, when constructing sticker
by sticker a complete computation of v, we will never need other sticky ends

than the following: one a in the upper or lower strand (written as X oor a ,

b A
respectively), one b in the upper strand ( A ), the blunt end ( A ) and aa in the

upper or lower strand ( N or )
As an example, observe the following sequence of seven (partial) computa-
tions of .

[b) [b)(aa)  [b){aa) [b)(aa){ab)  [b){aa)(a b)
[ba) [ba) [b a){aa)  [b a){aa) [b a){aa)(b)
[b)(aa){a b) [b)(aa){a b){aa)

[b a)(aa)(b){aa) [b a)(aa)(b){aa)
We use this sequence to explain how to construct a lazy finite automaton A
such that L(A) = L(y). Its states represent the occurring sticky ends, while
its transitions are labelled with the prefix of the applied sticker that matches
the current sticky end. We add a new initial state s from which the sticky ends
resulting from the axioms are reached.
The sequence starts with the axiom (b, ba), meaning that the first letter of

the string is a b and we have a sticky end a ; in the automaton this is described
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by the transition (s, b, 2 ). Then an upper sticker aa is used, adding the letter
a to the string and leaving an overhang a in the upper strand; for this we add

" A a
the transition (@ ,a, A ), and so on.

Clearly, L(A) = ba*b(aa)* = L(v). When considering only the primitive com-
putations of «y it suffices to remove all paths that continue from the final state

A
(1) of A, since that is the state that marks an intermediate blunt end. O

Third, not every regular language can be generated as the unrestricted language
of a sticker system: REG ¢ SL. Suppose that =y is a sticker system that generates
ba*b. Since the number of a’s in words from ba*b can be arbitrarily large, there
must be an upper sticker a’ and a lower sticker a* in -y, with £,k > 1. But then
a complete computation for ba'b, for some i > 0, can always be extended to a
(non-primitive) complete computation for ba’ba’* ([PR98, Theorem 10]).

Fourth, we have REG C COD(SL), which can be seen as follows. Sticker
systems are formalizations of Adleman’s use of self-assembly to find paths in a
given graph. Since a finite automaton is also a graph, for each finite automaton
a sticker system can be constructed of which the computations represent paths
from the intial state to a final state of the automaton. We need a coding to
remove the symbols representing the states from the resulting strings ([PRS98,
Theorem 4.8], [KP198, Lemma 5]).

Fifth, REG C COD(SL,): the stickers in the above mentioned system are
defined in such a way that the first symbol of an upper sticker never matches the
first symbol of a lower sticker, thereby ensuring that each computation of the
finite automaton is simulated by a primitive computation of the corresponding
sticker system ([PRS98, Theorem 4.8]).

Sixth, addition of a few extra axioms to the above construction yields a
fair computation for each computation of the finite automaton. Consequently,
REG C COD(SLy) ([PRS98, Corollary 4.10]) and REG C COD(SLyy).

We illustrate these constructions in an example.



STICKER SYSTEMS 83

Example 7.4 Counsider the finite automaton A = ({s,t, f},{a, b}, {(s,b,1),
(t,a,t),(t,b, f)},s,{f}), for which L(A) = ba*b. We define the alphabet ¥ as

Y ={s,t, f} x{a,b} x {1,2},
the elements of which we write as, e.g., ta2 rather than as (¢, a,2). The sticker
system v = (X,4d, Dy, Dy, A) is constructed as follows:

D, = {ta2tal, ta2tbl, tb2}
D, = {talta2, taltb2, tbl}
A = {(sbl, sblta2), (sbl, sbltb2)}

and the coding h : ¥ — {a,b} is defined by h(qci) = ¢ for each q € {s,¢, f},
c € {a,b} and i € {1,2}.

Note that the stickers of -y are either encodings of two consecutive transitions
of A, or encodings of transitions of A that end in a final state (the latter are
needed to stop the computation of ). Furthermore, note that because of the
use of symbols 1 and 2 the computations of y are intrinsically primitive. These
two observations together guarantee that only encodings of paths through the
automaton are generated.

Four sample computations of v are

[sbl)(tb2)  [sbl)(ta2 tbl)  [sbl)(ta2tal)(th2)  [sbl)(ta2tal)(ta2 tbl)
[sbl tb2)  [sbl ta2)(tbl)  [sbl ta2) (tal tb2)  [sbl ta2) (talta2)(tbl)

Clearly h(L(y)) = h(Ly(7)) = L(A).

Note that each computation of v that uses the lower sticker tbl to finish is
fair, and that all other computations (that use the upper sticker ¢b2 to finish)
have one more upper sticker than lower stickers. To guarantee that for each
computation of A there is a fair computation in the sticker system, we only
have to add the axioms (sbl tb2, sbl tb2) and (sbl ta2tal, sbl ta2) to A. For the
new sticker system 7' we then have h(L; (")) = h(Lps(v')) = L(A). 0

The first five observations above and the fact that REG is closed under codings
yield the following propositions.

Proposition 7.1 SL C REG = COD(SL)
Proposition 7.2 SL, C REG = COD(SL,)

Seventh, contrary to primitivity, which is a local property of computations,
fairness is more of a global property, that allows one to count. Consequently it
is not surprising that SLy — REG # &; an example of a non-regular fair sticker
language is L¢(y) = {z € {aa,bb}* | #4(z) = #4(z)} from Example 7.2.
Finally, the smallest upper bound for SL; that has been established un-
til now is MAT?, the family of context-free matrix languages with arbitrary
rules ([PRS98, Theorem 4.14]), which is a rather large family containing non-
semilinear languages, and which is known to be a strict subset of RE ([RS97]).
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7.4 Research topics

In [KP198] it is demonstrated that the family of fair sticker languages contains
non-regular languages, while the family of languages generated by context-free
matrix grammars with arbitrary rules is given as an upper bound. In connection
with this rather large upper bound the following problem is formulated: “is the
family [of fair sticker languages] included in the family of context-free languages
(or even in the family of linear languages)?”.

In Chapter 8 we answer this question by giving a fair sticker language that
is non-linear, while demonstrating that the fair sticker languages are strictly
included in another subfamily of the context-free languages, the blind one-
counter languages (Theorem 8.1 and Lemma, 8.2).

The main result of that chapter is that the connection between these two
families is quite strong: blind one-counter languages can be characterized as
codings of fair sticker languages (Theorem 8.5), giving the ‘fair version’ of
Proposition 7.1.

From Propositions 7.1 and 7.2 we can derive that SL C REG C COD(SL,),
or in words: each sticker language is a coding of a primitive sticker language.
In Section 9.1 we elaborate on this ‘primitive normal form’ for sticker systems:
we give a direct construction (i.e., not via finite automata) and we extend this
construction to fair sticker languages (i.e., we give a direct proof that each fair
sticker language is a coding of a primitive fair sticker language). In both our
constructions, every computation in the resulting sticker system is primitive.

Furthermore, research described in the literature is mostly about comparing
different kinds of sticker systems (e.g., unrestricted, bidirectional, simple, one-
sided, regular; they differ in the kind of axioms and stickers that are allowed)
to each other and to the language families from the Chomsky hierarchy. Until
now, there has been no attempt to relate the different kinds of sticker languages
(fair, primitive, etcetera; they are the result of restrictions on the computations
of the sticker system) that can be generated by one kind of sticker system.
In Sections 9.2 through 9.4 we describe the results of our research in that
direction for the unrestricted, fair, primitive and primitive fair sticker languages
generated by the type of sticker system that we consider: the simple regular
sticker systems.



Chapter 8

Fair sticker languages

We prove that each fair sticker language is accepted by a blind one-counter
automaton. Moreover, we show that each blind one-counter language is a
coding of a fair sticker language.

8.1 Fair sticker languages are BCA-languages

We answer the question left open in [KP198, p. 419]: is the family of fair
sticker languages included in the family of context-free languages (or even in
the family of linear languages)? To start, observe that the language L¢(7y) =
{z € {aa,bb}* | #4(x) = #p(z)} from Example 7.2 is context-free, but not
linear. The non-linearity of L (y) can be proved using the pumping lemma for
linear languages [HU79, Exercise 6.11], which says that if K is linear, then there
is a constant n such that every z € K with |z| > n can be written as z = uvwzy
with |uvzy| <n, [vz| > 1 and ww'wz'y € K for all i > 0. In the case of Ls(y),
it is clear that there are no such u,v, w,z,y for z = a®b*"a®" € Ls(v).

We will now give a first answer to the question posed in [KP198], by prov-
ing that every fair sticker language is a BCA-language (see Section 2.4), hence
context-free.

Theorem 8.1 SL; C 1BCA

Proof. Let v = (X, p, D, Dy, A). Because of Theorem 7.3 we may assume that
p = id. For each (zo,y0) € A, construct two BCA’s: By, and By,, as follows.
We describe the construction of B,, = (Q,%,d,q0,{f}) in detail, By, can be
made in an analogous way.

If zyp = A, then g9 = f. If 9 # A, then B,, has a path labelled by zg from
its initial to its final state. In both cases the counter is not changed, since the
axioms do not have to be counted. Moreover, for each w € D,, let B, have
a (new) path labelled with w from its final to its final state and add 1 to the

85
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counter at one moment somewhere along this path. Note that L(B,) = {zo},
which does not seem very useful yet.

Now we construct from each pair of BCA’s By, and By,, for (zo,%0) € A,
a BCA Bg,y, for which L(By, ) = Li(Va,y), where vz, is defined as
(3,id, Dy, Dy, {(z0,90)}), using a slightly adapted version of the product con-
struction for the intersection of two regular languages: for each pair of in-
structions (p,a,¢,q) in By, and (r,a,€’,s) in By,, the BCA By, ,, contains the
instruction ((p,r),a,e — €', {(q, 3)).

Finally, it is clear that Ly(v) = U, y)ea L(Bao,y) is in 1BCA, since 1BCA
is closed under union and A is finite. O

Omitting the counter from the previous proof, one constructs a finite state
automaton for L(7y) = Uz yo)ca (o Dy Nyo-Dy). This elementary observation
shows that SL C REG.

The inclusion SLy C 1BCA is strict because ba*b is not a fair sticker lan-
guage, whereas ba*b € REG C 1BCA.

z0,Y0

Lemma 8.2 ba*b ¢ SL;

Proof. We reconsider the proof of ba™h ¢ SL, cf. [PR98, Theorem 10] and
page 82 of this thesis. Assume that ba*b is the fair language of a sticker system
v = ({a,b},p,Dy, Dy, A). According to Theorem 7.3 we may assume that
p=id. Let DyNa®™ ={x1,...,zn} and DyNa™ = {y1,...,ys} be the sets of
stickers consisting of a’s only. Every string ba'b that is longer than the axioms
can be decomposed as a,z7' ...z B, = agy’fl ...yFn By, with «, the upper
part of an axiom (or a string from D, starting with b), and 8, € D, ending
in b, and similarly for «y, 5y. The vector v; = (j1,.-,Jm,k1,--.,ky) assigns
to ba'b the number of each sticker containing only a’s occurring in a possible
decomposition of the upper and the lower strand.

Because we have only a finite number of choices, an infinite number of
ba'b have the same strings v, ap, By, B¢ in their decompositions. According to
Dickson’s lemma [Dicl3, Lemma B] we can find ba’b and ba b (i’ > i) in this
infinite sequence such that vy > v; (componentwise). Now the vector vy — v
defines a ‘fair decomposition’ of a® %, which shows that ba’ba’ ! € L¢(7y),
contradicting L(y) = ba*b. O

In the next section we make our answer more precise, in the sense that we
show that 1BCA is a rather close upper bound for SL;: every BCA-language is
a coding of a fair sticker language.

8.2 BCA-languages are codings of fair sticker languages

In the case of arbitrary, i.e., not necessarily fair, sticker languages the simulation
of sticker systems by finite automata can be reversed provided that one can use
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a coding (Proposition 7.1). In this section we demonstrate that Proposition 7.1
can be extended to fair sticker languages and BCA-languages: every language in
1BCA is the coding of a fair sticker language (Theorem 8.5). First we illustrate
this in Example 8.1. Then we show that, for a particular kind of BCA called
sticky, this example can be generalised (Lemma 8.3). Finally, we explain how
these sticky BCA’s can be used to construct a coding of a fair sticker language
for every BCA-language.

Example 8.1 Counsider the BCA A given below.

The automaton accepts the language { w € {ab,ac}* | #p(w) = #.(w) }. This
can be verified by considering the four-letter segments abab, abac, acab, and
acac. While the automaton makes a cycle on these segments (starting and
ending in {bg,co}), it changes its counter by —1, 0, 0, and +1, respectively.
Note that there is a much easier BCA that accepts the same language; however,
the special structure of the automaton above is essential for this example.

First, we forget about the counter, and we have a look at the finite-state
behaviour of A, {abab, abac, acab,acac}*. A computation of A can be sim-
ulated by a (fair) computation of a sticker system with overlapping stickers,
cf. [KP798, Lemma 5], illustrated as follows, with brackets to delimit the stick-
ers and the axiom:

[)(a1 b2 as bg)(a1 b2 as co)(a1 Cy asg bg)(a1 Cy as Co>
[ a1 b2><a3 b() al b2><a3 Co ail CQ><G3 bo al C2><G3CO>
Second, we can include the contents of the counter by representing it as the
difference between the number of upper and lower stickers in the computation
of the sticker system. For each increment instruction we detach the last com-
ponent of an upper sticker, and similarly for decrement instructions and lower
stickers.
+1 +1
(a1 b2 a3z bo){ar bz az){co)(ai ca a3 bo){ai c2 az){co)

[ a1)(b2){as bo a1)(b2){as co a1 c2){as by a1 c2)(as co)
-1 -1
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Let v = (Q,id, Dy, Dy, A) be the sticker system specified by

A = { (>" >‘) ) (Aaal) ) (>‘7GIC2) }
D, = {aibsaz, aibyazby, aiczas, aicaaszby, co}

D, = {azboay, azbpaicy, azcoay , azcpaicy, azby, azcy, by}

Then L(A) is obtained by applying to L¢(7y) the coding h : Q — {a,b,c} that
maps a1, as to a, by, bs to b, and ¢y, co to c. O

Note that, in our construction, paths through the automaton are simulated in
the sticker system by building them from segments of four consecutive states,
instead of two consecutive states, as is the case in [KP798, Lemma 5]. The
reason for this is that we sometimes want to disconnect the last state from
such a segment. If we use segments of length shorter than four, then it becomes
possible to generate sequences of states that do no form a path in the automaton
(see also the proof of Lemma 8.3).

A crucial property of the BCA from the above example is formalized in the
following notion.

Definition 8.1 Let A = (Q,X%,4,qo, F) be a BCA. 1t is sticky if there is a
partition of its state set QQ = U?:o QQ; such that ¢ is a subset of

(Qox X x{0} x@1) U (Q1xEx{-1,0} xQ2) U
(Qax X x{0} xQ3) U (Q3x%x{0,+1} x Qo)

and such that gy € Qg and F C Q. O

The BcA A from Example 8.1 is sticky, since obviously the partition @y =
{bo,co}, Q1 ={ar}, Q2 = {ba,c2} and Q3 = {a3} satisfies the requirements.

A sticky BCA changes its counter in a very restrictive way: in each segment
of four instructions the automaton may increment and decrement its counter
only once, and only at specific positions. Note that the language accepted by
a sticky BCA always consists of strings with lengths that are multiples of four.

We generalise the construction from Example 8.1 to sticky BCA’s.

Lemma 8.3 Let A be a sticky BCA. Then there exist a sticker system -y and
a coding h such that L(A) = h(Ls(7)).

Proof. Let A = (Q,%,d,q0,F) be a sticky BCA. We write the state set as a
disjoint union @ = U?:o Q; as in Definition 8.1.

Let h : @ — % be a coding such that each instruction is of the form
(p, h(q),¢,q), i.e., all instructions ending in a given state read the same letter.
This can easily be achieved by splitting states into several copies — one for each
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letter from the alphabet, each of which has the same outgoing instructions —
and re-routing the instructions into the appropriate copy. In the same vein we
assume that there exists a partition Q2 = Q9 U ()5 , such that each instruction
(p,a,e,q) entering QY (Q5) has e = 0 (¢ = —1, respectively). Similarly we
assume Qp = Q) U Qa“.

Construction. A sticker system v = (Q,id, Dy, Dy, A) with h(L(y)) = L(A)
is constructed as follows. To avoid confusion between states and stickers, we
keep the intuitive bracket notation for the stickers.

upper stickers. For every pair of consecutive instructions (pi,asg,£2,p2) and
(p2,a3,0,p3) with p; € @1, D, contains the stickers (pipops) and, for
every po € QY, (p1pep3po). For each p, € QS’, D, contains the sticker

(p+)-

lower stickers. For every pair of consecutive instructions (ps,ag, g, po) and
(po,a1,0,p1) with p3 € @3, Dy contains the stickers (pspop1) and, for
every po € @Y, (pspopip2). For each p_ € Q,, Dy contains the sticker
(p—). For every instruction (ps,ag,cq,po) with ps € Q3, po € F, Dy
contains the sticker (pspo).

azioms. For every instruction (qo,a1,0,p1) with p; € Q1, A contains the pairs
(A, p1) and, for every ps € QY, (A, p1p2). If o € F, i.e., A € L(A), then
(A, A) is added to A.

Correctness. Observe that A € L(A) if and only if A € L;(y) if and only if
X € h(Ls(7)).

Now, let 7 = p1pops ... pp € Q1 be an element of Ly(vy), for some n > 1.

First, we reconstruct a computation of A by following the computation of ©
in 7. Since there is no computation longer than (A, \) starting with (A, \) € A
— all stickers in D, start with symbols from ¢); U Q0+ , whereas all stickers from
D, start with symbols from Q3 U Q5 — we know that the computation of 7 in
started either with (A, p1) € A or with (X, p1p2) € A, where p; € Q1. According
to the construction of A, ¢ contains an instruction (qg, a1,0,p1).

We continue by observing that each upper sticker of length 3 or 4 starts at
position 44 4+ 1, and that each lower sticker of length 2, 3 or 4 starts at position
41 + 3, for some ¢ > 0. It is easy to see that this follows from the only possible
computation of 7, here illustrated for n = 8:

D(pL— p2—p3---pa ) P5s — P6 = 7" Ps)
[ p1--p2 ) p3s— pa—ps5-pe ){ pr — ps)

Here the arrows indicate parts of a sticker that represent instructions from ¢,
while the dotted lines do not necessarily correspond to an instruction from
0 and, at the same time, indicate that the next symbol may be detached
to form a sticker of length 1. Moreover, observing D, we find instructions
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(Pait1, Qaiv2, €dit2, Paiv2) and (paiy2, a4i13,0,paiq3), while Dy gives rise to in-
structions (paiy3, G4iy4, €4it4,Paita) and (Paita, Gai45,0,P1i45)-

Since p,, is the last symbol of stickers from both D, and D,, we know that
pn € F C Qp, and there exists an instruction (p,—1,an,n,pp) in 6. Note that
n is a multiple of four, and we write n = 4k.

Second, we address the matter of fairness. To compute the contents of the
counter we study the even positions of 7. Observe that €414 = +1 if and only
if paita € Qf , which implies that the sticker (ps;14) is used in the upper part
of the solution. Otherwise, if €4;44 = 0, then py;14 is the fourth element of
the sticker (p4j+1p4it2p4i+3P4i+4). Thus, the number of upper stickers equals
k+ Z;:OI €4i+4. Similarly, the number of lower stickers equals k — Ef;ol €4i+2-
Consequently, fairness of the sticker solution is equivalent to counter value zero
and acceptance by the BCA.

The above shows that h(Ls(v)) € L(A). For the converse inclusion L(A) C
h(Lf(7)) a similar reasoning can be given. O

Sticky BCA’s form a normal form for BCA’s accepting languages consisting of
strings with lengths that are multiples of four. The idea behind this is the
following.

Let A be a BCA, and suppose that we want to construct a sticky BcA B
such that L(A) = L(B). In every four steps, A changes the contents of its
counter by at most 4. The new BCA B however, may change its counter by
at most =1 in the corresponding four steps. To make up for this, we change
the interpretation of the counter value of B: each unit on the counter of B
represents 4 units on the counter of A, an idea known at least since [FMR68].
Now, B simulates the computation of A. Each change made to the counter
of A is recorded in the finite-state memory of B. Only when allowed (at the
specific points in the four step cycle), B moves any excess of £4 units of A’s
counter as one unit to (or from) its own counter.

Lemma 8.4 For each BCA that accepts only strings of lengths that are multi-
ples of four, there exists an equivalent sticky BCA.

Proof. Let A = (Q,,0,q0, F) be a BCA as mentioned in the lemma. We
construct a sticky BCA B such that L(A) = L(B).
Let I ={0,1,2,3}. The state set ' of B equals

QxIx{-4,-3,-2,-1,0,1,2,3},

the elements of which we denote as p.i.m, rather than as (p,i,m). Here p € Q)
represents the state of A, 1 € I keeps track of the four step cycle, and —4 <
m < 3 is the remainder value of A’s counter not yet stored in the counter of B.
Hence, if ¢ is the value of A’s counter and ¢’ the value of B’s counter, then the
equality ¢ = 4/ + m should hold for each pair of corresponding instantaneous
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descriptions of A and B. The initial state of B equals ¢.0.0, its final state set
equals F' x {0} x {0}.
Let (p,a,e,q) be an instruction of \A. Then B has the instructions

a, 0, g.l.m+e)
a, —1,q2.m+e+4) if m+e< -1
p.l.m, a, 0, q.2.m+ec) if m+e>-1
a, 0, g.3.m+¢)

a, +1,q.0om+e—4) if m+4+e>1
p.3.m, a, 0, q.0.m+c¢) it m+e<l1

We chose to check the relation between m+¢ and £1 rather than between m+¢
and 4, although the latter seems more logical. The reason for this is that we
need to prevent the occurrence of the situation where i = 0 and ¢ = 4¢’ +m =0
while ¢/ # 0 and m # 0 (which can occur only when m is a multiple of 4), i.e.,
B does not accept while it should. Because of this choice, indeed the reachable
configurations of B satisfy the following restrictions, for p.i.m € Q’:

if i=0 thenm e {-3,-2,— 10}
1 {~4,-3,-2,-1,0,1}
2 {~1,0,1, }
3 (~2,-1,0,1,2,3}

It is easy to see that B is sticky, as it adheres to the four step cycle from
Definition 8.1.

Moreover, our construction introduces for each instruction (p,a,e,q) of A
exactly one instruction (p.i.m,a,€’,q.i’.m') for each pair i,m. This makes it
straightforward to show that a computation (qo,zy,0) H/ (q,y,¢) of A cor-
responds with a computation (go.0.0,zy,0) F (g.i.m,y,c) of B satisfying
c=4cd +m, and i = j mod 4.

To show that L(B) C L(A), observe that if B reaches a final state ¢.0.0 with
counter value zero, then A (using the corresponding computation) reaches final
state ¢, also with counter value zero.

Conversely, assume that A reaches a final state ¢ € F' with counter value
zero. Now the corresponding computation of B reaches some state ¢.i..m and
counter value ¢’ satisfying the invariant m + 4¢’ = 0. By the length restriction
of strings accepted by A we know that ¢ = 0. Hence, taking into account the
reachable states of B, we have m € {—3,...,0}. Thus m +4¢ = 0 implies that
m = 0 and thus ¢’ = 0, corresponding to acceptance with counter value zero in
final state ¢.0.0.

A more formal inductive proof that L(A) = L(B) is left to the reader. O
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Finally we arrive at the main result of this chapter, the equivalence of blind
one-counter languages and codings of fair sticker languages. Note the similarity
with the situation for (arbitrary) sticker languages (Proposition 7.1).

Theorem 8.5 SL; C 1BCA = COD(SLy).

Proof. By Theorem 8.1, SL; C 1BCA. The inclusion is strict by Lemma 8.2.
As 1BCA is closed under codings, the inclusion COD(SLy) C 1BCA follows. We
proceed by proving the converse inclusion.

Let L € 1BCA. For every string w, we define L, = { z | wx € L,|z| =
0 mod 4 }. By the closure properties we have established for 1BCA in Sec-
tion 2.4, L,, is also in 1BCA, and, by Lemma 8.4, it is accepted by a sticky
BCA. Consequently, it is the coding of a fair sticker language (Lemma 8.3).

Note that L = U‘w|§3w-Lw. A sticker system for the language w- Ly, is
obtained from the one for L,, by replacing each axiom (z,y) by (wz,wy) and
extending the used coding with the identity on the alphabet of L. Assuming the
sticker systems representing the w-L,, have disjoint alphabets (by renaming),
we build a sticker system for L by taking their (finite) union. O

Our characterization shows that COD(SLy) is a more ‘robust’ family than SL
itself, comparable to the situation for COD(SL) and SL. In particular, we can
conclude that COD(SLy) enjoys the many closure properties of a principal ra-
tional cone (arbitrary morphisms, inverse morphisms, intersection with regular
languages, and union). Some of these properties seem to require rather involved
proofs, should we want to show them by direct construction.

8.3 Summary

We have answered a question concerning the position of SLy in the Chomsky
hierarchy: is SL; C CF or even SLy C LIN? We showed that SLy Z LIN, and we
proved that SLy C 1BCA, which is a subfamily of CF. Moreover, we showed that
1BCA is a rather close upper bound for SL; by proving that 1BCA = COD(SLy).



Chapter 9

A hierarchy of sticker families

We give direct constructions to create for each (fair) sticker system an equiv-
alent — modulo a coding — (fair) sticker system that can do only primitive
computations. We also investigate the relations between the families of unre-
stricted, primitive, fair and primitive fair sticker languages.

9.1 A primitive ‘normal form’

In [PRS98, Chapter 4] the following proposition can be derived from Theo-
rem 4.1, Lemma 4.1 and Corollary 4.7 to Theorem 4.8 (see also Section 7.3 of
this thesis):

Proposition 9.1 SL C REG = COD(SL,)

This implies that for every sticker system v a sticker system ' and a coding
h can be constructed such that L(y) = h(L,(7y')), or in words: every language
that is generated by a sticker system can also be generated using only primitive
computations, provided that one is allowed to use a coding. A closer look at
the proof of [PRS98, Theorem 4.8] reveals that 4/ can be constructed such that
each of its computations is primitive. However, this construction is not direct:
first an equivalent regular grammar is created for the original sticker system
(using the construction given in the proof of [PRS98, Theorem 4.1]), and then,
using a coding, this regular grammar is translated into a sticker system that
allows only primitive computations (see the proof of [PRS98, Theorem 4.8]).
We show that there is also an elegant direct construction (Lemma 9.1),
based on the observation that if there is no pair consisting of an upper and a
lower sticker such that their first letters are complementary, then every com-
putation is intrinsically primitive, since it cannot continue after a blunt end.
(The same observation is used in the proof of Lemma 8.3 and in Example 7.4,
but for different reasons.) To cover also the non-primitive computations of the
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original system, we add new stickers that are concatenations of two old stick-
ers. These new stickers can now be used at the positions where in the original
computation an intermediate blunt end occurred.

As an aside, note that if all computations of a sticker system - are primitive,
then L,(y) = L(7), but not the other way around: some words in L(7y) may
have both a primitive and a non-primitive computation.

Lemma 9.1 For every sticker system vy a sticker system ' and a coding h can
be constructed such that all computations of v are primitive and h(L(y')) =

L(y).

Proof. Let v = (X, p, Dy, Dy, A) be a sticker system. We may assume that p
equals the identity on 3.

Construction. Define v = (X', p', D;,, D}, A") as follows:
¥ = YU {aleel}

4 = p U {0, @a) |ae)

D, = {atay...ar|aay...ar € D, for ay,...,ap € X} U
{aras...axx | aras...ax, x € Dy for ay,...,a; € X}

Dy = {ayaz...ar|ajay...ax € Dy for ay,...,ap € £} U
{aras...axy | aray...a;, y € Dy for ay,...,ar € X}

A" = A U {(woz,y0) | (w0,90) € A and x € Dy}

The coding h is defined by h(a) = h(a) = a for all ¢ € X.
We call each element of D; (Dj) that is a concatenation — modulo the
coding h — of two elements from D,, (D,) an upper (lower) double-sticker.

Correctness. First, it is easy to see that all computations in 7/ are primitive:
since we have marked the first letter of each sticker and have defined p' in such
a way that two marked letters are never complementary, it is clear that no
complete computation can be prolonged.

Second, we prove that L(y) C h(L(vy')). Let x € L(y), i.e., = 2o1 - . - Ty =
Yoyl - - - Yn, With (zo,y0) € A, z1,..., 2y € D, for somem >0, and yy,...,y, €
D, for some n > 0.

We start by observing that each element of D,, Dy or A is — modulo
the coding h — also in D;,, D) or A', respectively. Hence if the computation
(xoZ1 - .- Tm,YoU1 - - - Yn) Of 7y is primitive, then there is a primitive computation
(Z0Y -+ - Ty Yoy - - - Yp) Of ', with (7)) = @; for 1 <4 < m and h(y)) = y,
for1 <j<n.

Now assume that (xozy...ZTm,Y0Y1...Ys) i not primitive. Let i1,... 1
and j1,...,7k, With £ > 2, 0 < 4 < ... <41 <9 =mand 0 < j; <
.o. < Jr—1 < jr = n, be all indices such that (xo...z;,,y0...y;,) is a complete
computation of v, for p such that 1 < p < k. Define uy = zy...2;, v1 =
Yo - Yjrs Up = Tipy_y41--- T, and vy = y;_41...y;, for each 2 <p < k.
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(151 Ug Up U
. N7 N 17 N |7 N
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Yo oo Yji VY541 o Ygo b e W Y a1 Y b e Y 41 Y
N | e, re” | 1\ —— e | 1\ —— e’
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Hence there are exactly k£ — 1 intermediate blunt ends in the computation
(xox1 ... Zm,Yoy1 - - - Yn), and they are located on the borders between (u; ... u,,
v1...0p) and (Upy1 ... Ug, Vpt1 ... V), foreach 1 <p <k —1.

For every odd p, with 1 < p < k —1, u, ends with z;, and wuy starts with
i, 4+1. According to the definition of D, there is a double-sticker x%p " Tj, 41 In
D!, with h(x;p) = z;,. (If p=1and 4y = 0, then there is an axiom (zoz1,yo)
in A'.)

Analogously, for every even p, with 2 < p < k — 1, v, ends with y; , v,11
starts with y;, 11 and Dj contains the double-sticker y;-p “Yj,+1 With h(y}p) = Yj,-

Note that in this way at every ‘odd’ intermediate blunt end an upper double-
sticker is used, while at every ‘even’ intermediate blunt end a lower double-
sticker is used. This alternation of upper and lower double-stickers solves any
problems that may arise when three consecutive intermediate blunt ends are
separated only by one upper and lower sticker between the first and second
blunt end, and one upper and lower sticker between the second and third. In
other words, this alternation guarantees that we do not need concatenations of
more than two ‘old’ stickers (modulo the coding).

Consequently z € h(L(v')) and L(y) C h(L(¥")).

Finally, it is obvious that every upper sticker of 7' has a one-to-one corre-
spondence (via the coding h) with either an upper sticker of -y or the concatena-
tion of two upper stickers of -y, and similarly for the lower stickers. Furthermore,
every axiom of ' is either an axiom from < or an axiom from « in which the
first component has an upper sticker from -y concatenated to it. Therefore it is
straightforward that h(L(v")) C L(vy). O

In the sequel of this section we demonstrate that Lemma 9.1 can be extended to
fair sticker languages. As before, the result is already known, but only through
an indirect construction that can be derived from results in the previous chap-
ter: combining the constructions in the proofs of Theorem 8.5 and Lemma 8.3
we get the following result.

Lemma 9.2 SL; C 1BCA C COD(SL,y)

We give here a direct construction, in which we use essentially the same tech-
nique as in the proof of Lemma 9.1 above, i.e., we mark the beginning of each
sticker and we use double-stickers to ‘bridge’ (or ‘ligate’) intermediate blunt
ends.
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Note that every time an upper (lower) double-sticker is used instead of two
normal upper (lower) stickers, the total number of upper (lower) stickers used
in the computation decreases by 1. Since we now want (un)fair computations to
remain (un)fair, we have to guarantee that exactly as many double-stickers are
used in the upper strand as in the lower strand. This can be done by ensuring
that double-stickers are applied alternately in the upper strand and in the lower
strand at the positions where in the original system an intermediate blunt end
occurred. In the previous proof we already used the fact that the application of
double-stickers can happen alternately, and it is easy to extend the method used
there to guarantee this alternating application: add a symbol to each letter in
the alphabet, indicating in which strand the next double-sticker should occur
(say that ‘1’ means upper strand and ‘] ’ means lower strand) and use these
extended letters in the stickers and axioms in both strands, requiring that at
each position either both strands have{ or both strands have|. Change from 1
to | if an upper double-sticker is used, and from | to1 if a lower double-sticker
is used. Start, e.g., witht.

If the original computation had an even number of intermediate blunt ends,
then the above approach gives a new computation in which the difference be-
tween the number of upper and the number of lower stickers is the same as
in the original computation. However, if the original computation had an odd
number of intermediate blunt ends, then the lower strand of the new compu-
tation will have one extra sticker less than the other strand. To prevent this
from happening, we require that for such an ‘odd’ original computation the
first intermediate blunt end should be bridged in both the upper and the lower
strand. We indicate this with the symbol ‘7’ in both strands.

We use the extra symbol ‘*’ to ensure that the translation that is meant
for ‘even’ original computations is not used for ‘odd’ original computations and
vice versa (actually, x ensures that computations do not end with | or }), and
‘#’ to guarantee that the J symbols have the desired effect (for details see the
proof below).

Lemma 9.3 For every sticker system «y a sticker system ' and a coding h can
be constructed such that all computations of v' are primitive and h(Ls(y')) =

Lg()-
Proof. Let v = (3, p, Dy, Dy, A). We may assume that p is the identity on X.
Construction. Define v = (¥', ¢/, D;,, D), A’) as follows, where the a;, b;, ¢; and
d; are symbols in X:
¥ o= {a'Ta a’\La aTa a\l/a a’\L*a G\L*a aia E:I:a ai#a G:I:# | ac 2}
Pl = {(aTaaT)v (aTaaT)a (aTaaT)v (awlfaai)u (E\L,ai), (a\lf,ai),
(ahal), (alsal), (ahals), @ al), @haly , (als,al),
(al,al), (al#,al#) |ae X}
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D, = {aitat.. . at,
aylazl ...apdx,
a1l al ... arlx,
artazt...apTbil...onlx,
a1l a2l ...apl#0LT .. 0T,
a1l ael . capl#L T bptal o oemdx |
a1az...a5, by...by, c1...c;y, € Dy }
Dy = {aitat...at,
arl agd ...aplx,
a1l a2l ... arl*,
arlazl...apdbrit... o1,
a1l ael...apl#b11T ... 01T | arag...ak, by...b, € Dy}
A" = {(a1t...apt, bt ...b,1) | (ar...ap,b1...0,) €A} U
{ (a1t ...artcard.coemdx, byt .. 0,1) | k>,
(ay...ag, by...0p) € Aand ¢y ...cp, € Dy} U
{ (@l -carl, il ... by T%),
(@13 ...akl, il .. opJ#HaT...en®) | kK <n,
(@y...ax, br...by) € Aand ¢y ...cp € Dy} U
{ (@l . capdx, 1 l...007),
(@17 ...agl#at...ent, 01l .. 007) | k>n,
(@y...ak, br...by) € Aand cy...cp € Dy} U
{ (a1l ...apl#at...emTdid .. odpdx, 017 ...0,0) | k>n,
(ap...a, by...by) € Aand ¢y ...cpp, dy...dp € Dy} U
{ (a1l ...axl#at...cmt, 1l . bpI#HAL T ... dnt) |k =n,
(ay...ak,by...by) €A, c1...¢cp € Dy and dy .. .d, € Dy}
The coding h is defined by h(a 1) = h(a)) = h(@1) = h(al) = h(alx) =
h(alx) = h(al) = h(al) = h(al#) = h(al#) = a for each a € X.
Note that p is defined such that the arrowst, |, ] and J# must match the

decoration of the corresponding letter in the other strand, whereas bars (@) and
stars (*) must not match.

Correctness. First, as in the proof of Lemma 9.1, it is clear that all computa-
tions of 4/ are primitive.

Second, we show that L¢(y) C h(Lf(v')). Every computation of y can also
be written as (uq ... ug,v1...v;), with the same properties as in the proof of
Lemma 9.1. Following the same reasoning as in that proof, and in view of the
definition of 7/ and the explanations directly before this lemma, it is clear that
for each computation of v an equivalent (modulo A) primitive computation of



98 A HIERARCHY OF STICKER FAMILIES

7' can be given. The correspondence between such a pair of computations in
and v/ is represented schematically for three sample computations in Figures 9.1
and 9.2, where Figure 9.1(a) corresponds to Figure 9.2(a) and so on.

Uy U2 U3 U4q Us Uy U2 Uus
— I T
(a) — Lo : (b) —
U1 el vy vy ws v vy V3
U1 U2 uz  Ug
— R T
(c) o o :
U1 () VU3 V4

Figure 9.1: Three computations in y

Here a vertical dashed line indicates an intermediate blunt end (a real one
in Figure 9.1 and a ‘prevented’ one in Figure 9.2), the two boxes in every
computation represent the two parts of an axiom, and each solid horizontal
line is a sticker. The black dots in Figure 9.2 indicate the positions where
two ‘normal’ stickers are concatenated to form a double-sticker, and an arrow
placed on a line or a box means that every letter in that sticker or axiom (until
the next black dot) has that arrow with it. We did not draw the * and #
symbols.

w1 w9 W3 w4 wr w1 Wy ws

IilM:i‘i_i:_T_T Iibi:_T_T_T
S R AT I S U S S S A
zZ1 zZ9 23 Z4 z5 Z1 Z9 z3

Figure 9.2: Three computations in 7/

It should be clear that the difference between the number of upper stickers and
the number of lower stickers used in the computation of 7y is the same as in the
corresponding computation of 7/. As explained, this is due to the alternation
of T and | in the ‘segments’, forcing the concatenation of stickers to occur an
equal number of times in the upper and lower strand; the mark * prohibits an
unmatched concatenation in the upper strand.

Third, for the same reason as in the proof of Lemma 9.1, it is clear that

h(L(7')) € L(v).
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Finally, we show that for each fair computation (z,y) of 7' there is a
fair computation (h(x),h(y)) of 7. Define ¥ = {aT,at| a € ¥}, ¥ =
{al,@l,alx,@l* | a € ¥} and %y = {al,al,al#,al# | a € X} A
careful look at the definition of 4/ reveals that each computation of 7' can also
be written as (wy ... wp, 21 ... 2y,), for a certain n > 1, where either w;, z; € 2T+
for 7 odd and w;, z; € Ej‘ for ¢ even, or wy, 21 € EI+’ Wy, 2; € ZT+ for ¢ even and
w;, z; € Ef' for 4 odd. Since every sticker that ends with a symbol from ¥ is
marked with a * in this last symbol, and since p’ defines that two symbols that
are both marked with % are not complementary, it follows that wy,2; € ET+ if
and only if n is odd, and wy, 21 € Zf“ if and only if n is even.

For i odd, the only way to cross the border between (wj,z;) € ET+ X 2T+
and (wiy1,2i+1) € Ef' X Ej is to use a double-sticker in the upper strand.
Similarly, for ¢ even, the only way to change from (w;,z;) € Zf X Zf to
(Wit1,2i41) € ZT+ X ZT+ is to use a double-sticker in the lower strand. Note
that there are no lower double-stickers in 2T+ . Ef“ and no upper double-stickers

in Z]f' . ET+‘ Moreover, double-stickers can only be used on such a border,
because every double-sticker contains at least two different kinds of arrow,
whereas every ‘blunt segment’ (w;, z;) contains only one kind of arrow.

Furthermore, no computation can consist of only symbols from ¥, and the
only way to finish a computation that starts with an axiom beginning with
symbols from ¥y is to use in one of the two strands something that contains
a # (i.e., a double-sticker or an axiom with a sticker attached to at least one
of the two components). From the definition of p’ it follows that symbols
containing # are complementary only to themselves, which guarantees that at
that position a double-sticker or an axiom concatenated with a sticker is used
in both strands.

In short, the symbolst, |, * and # together guarantee that in each compu-
tation of 4 the number of concatenations (the black dots in Figure 9.2) used
in the upper strand equals the number of concatenations used in the lower
strand. Hence when in a fair computation of 4’ these concatenations are ‘de-
tached’ again we have a fair computation of v that generates the same string,
modulo h. O

9.2 Primitive computations

In the previous section we gave a construction to translate a sticker system -y
into an equivalent (modulo a coding) sticker system +' that can do only primi-
tive computations. When we only wish to satisfy the weaker requirement that
L(7) equals Ly(v'), i.e., not all computations of 7' have to be primitive, then
we can use a simple variant of the construction in the proof of Lemma 9.1: just
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remove the markings and the coding. The result is described in the following
theorem.

Theorem 9.4 SL C SL,

Proof. Construction. Let v = (X, p, Dy, Dy, A) be a sticker system. We
construct a sticker system ' = (X, p, D;,, D), A") with L,(y") = L() as follows.

D, = D, U {zy|z,y€ D,}
Dy = D¢ U {zy|=z,y€ D}
A" = AU {(zox,y0) | (z0,y0) € A and z € Dy}

Correctness. Clearly, for each computation of v, the new sticker system '
can do both exactly the same computation and a primitive computation that
generates the same string. Now by the proof of Lemma 9.1, if we remove from
that proof all reference to the markings and the coding, we have L(7y) = L,(Y').

O

Hence this yields a true primitive normal form for sticker languages (as opposed
to the primitive ‘normal form’ from the previous section, where a coding was
needed): for each sticker language there is a sticker system that needs only
primitive computations to generate it.

Now let us return to Example 7.1, where we show that ba*b € SL,. Since
it is known that ba*b ¢ SL (see page 82), we can refine the inclusion in The-
orem 9.4 to a proper inclusion. Indeed, the reason that ba*b is not in SL is
that computations in general may be non-primitive and therefore can also de-
rive words from ba*ba™ in any sticker system generating all words from ba*b
([PR98, Theorem 10]). This already suggests that it is possible to generate
ba*b when only the primitive computations are taken into account.

Corollary 9.5 SL C SL,,

Hence we have SL C SL, C REG. We would now like to know whether the
latter inclusion is proper or not. A candidate language to show that it is proper
could be a*ba*, because it seems unlikely that any computation of any sticker
system can ‘know’ whether it has already generated the b or not. However,
the following example shows that this problem can be overcome by coding the
‘state’ into the length of the sticky ends. Since a*ba* ¢ SL, the example makes
essential use of the selectiveness of primitive computations.

Example 9.1 We show that a*ba™ € SL,,. The idea is that we need at least one
upper and one lower sticker that both consist of only a’s, plus one upper and
one lower sticker that both contain one b and possibly some a’s before or after it.
Moreover, when the latter two stickers appear together in a computation, the
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b’s have to match (we use the identity on {a, b} as complementarity relation),
and since we only consider primitive computations this must leave a non-empty
overhang left of the b and a non-empty overhang right of the b (assuming that
the computation is long enough). To get the correct number of b’s in the
resulting string, we have to be able to distinguish between the a’s before the
b and the a’s after the b. Since in those parts of the string we can only use
stickers consisting entirely of a’s, the only way to do this is by ensuring that
the overhangs occurring before the b are different from the overhangs occurring
after the b.
Let v be the following sticker system:

Y = {a,b}
p = 1id
D, = {a*,b,aba, ba®, aba®}

D, = {a*,ab, ba, aba?, ba®, a®}
A = {(Ad), (a,a"), (a%a%), (a®,a®)} U
{ (a'b,a'b), (a'ba, a’ba), (a’ba?,a'b),
(a'ba®,a'ba) , (a'ba*,a’ba®) | 0 <i<4}

Observe that the axioms that consist of only a’s all have a sticky end of length
3 in the lower strand. Now, when we add stickers containing only a’s (i.e., a*
in the upper strand and a*, a? in the lower strand) to axioms of this kind, there
are only four sticky ends that can occur, provided that we add the stickers in
such a way that the current sticky end is not prolonged. The relations between
these stickers and overhangs are depicted in the finite automaton below, in
which we have indicated, e.g., an overhang of 3 a’s in the lower strand by the

0 . . . .
state 3. When the upper sticker a* is added to a computation that ends with
such an overhang, a new overhang of one a in the upper strand is created,

.- 0 1 1. .
denoted by a transition from 3 to 0 labelled by ‘u : ¢*’. In the new state o0 it is

possible to add lower sticker a? (denoted by a transition labelled by ¢ : a*) or
a® (¢ : a?), and so on.

. 0. . .
Since the above automaton does not have a state o, it is clear that computations
without a b are never complete.
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Note that the only matching pairs consisting of an upper and a lower sticker,
both containing a b, that can be used in a primitive computation of v are the
following (the pairs are indicated by writing the upper sticker on top of the
lower sticker, with the b’s matching):

b b aba aba baa baa abaaa abaaa
ab abaa ba baaa ab abaa ba baaa

Indeed, in each of these pairs the overhangs before the b (length 1) differ from
those after the b (length 0 or 2), and each of these pairs can be attached to a

. .. 0 1. .
computation ending in state 1 or 0 in the automaton depicted above. Moreover,
after using any such pair we can finish the computation using a* in the upper
and a*,a? in the lower strand. The sticky ends that are possible when we

. 0 2 . . .
add stickers to the overhangs 2 and 0 are given in the automaton below (since
we consider only primitive computations, we have to stop when reaching the

overhang 0 )
u:at
Gt

Clearly, when we have reached one of these three overhangs, it is not possible to
prolong the computation by using stickers containing b’s. Note that the axioms
that contain a b all leave overhangs of length 0 or 2 as well. Consequently, our
sticker system ensures that every string in its primitive language is of the form
a*ba*.

Suppose that we use one of the axioms containing only a’s. When in the
upper strand the stickers b or ba? are used, then there are 45 + 4 a’s in front of
the b, for 7 > 1 and 0 <4 < 3, and after the b there are either 4k a’s or 4k + 2
a’s, for k > 0, respectively. Similarly, when in the upper strand the stickers
aba or aba® are used, then there are 45 + i a’s in front of the b, for j > 1 and
1 <4 <4, and after the b there are either 4k + 1 a’s or 4k + 3 a’s, for k > 0,
respectively. Thus, when using only the axioms consisting of a’s, our sticker
system can generate all strings of the form a‘ba’ for i > 5 and j > 0, using
only primitive computations. Since primitive computations starting with the
other axioms in A yield all strings of the form a‘ba’ for 0 < i < 4 and j > 0,
we have a*ba* C Ly(7). O

A logical next step would be to investigate, e.g., whether a*ba*ba™ is also in SL,,,

. C 0103
since for a*ba* we needed two disjoint groups of overhangs, namely { 3,0,1,0 }

and { g, (2),8 }, but for a*ba*ba* we would need three. Although it is possible to

create three disjoint groups of overhangs by using, for instance, a® as an upper
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. . S . 0520
sticker and a® and a® as lower stickers, which gives the disjoint sets { 1,0,0,4 },

0410 030 . . .
{ 2,0,0,5 } and { 3,0,0 }, the question whether there exists a sticker system

that generates a*ba*ba™ as its primitive language remains unanswered.

9.3 Fair computations

Rather surprisingly, it is also possible to generate each sticker language with
only fair computations. The idea behind this is that when a computation
alternatingly uses an upper sticker leaving a sticky end in the upper strand
and a lower sticker leaving a sticky end in the lower strand, then the difference
between the numbers of upper and lower stickers used can be at most one, i.e.,
the computation is either fair or almost fair. Of course, in general it is not the
case that sticky ends occur alternatively in the upper and lower strand. For
instance, it can happen that the only lower sticker that matches a sticky end
in the upper strand is not long enough to match the entire overhang. In such
a case we use a similar technique as when making a computation primitive: we
concatenate as many lower stickers as necessary to create either a sticky end in
the lower strand or a complete computation. Since there is only a finite number
of axioms and a finite number of stickers, it can be determined beforehand how
many stickers should be concatenated in the worst case.

Theorem 9.6 SL C SL;

Proof. Construction. Let v = (X, p, Dy, Dy, A) be a sticker system. We
construct a sticker system ' = (%, p, D;,, Dy, A’) with L¢(v'") = L() as follows.

Let d = max {dg,ds}, with dq = max {|zo| — |yol, |vo| — |zo| | (z0,y0) € A}
and ds = max {|z| |z € D, U D,}. Now define

D, = {zi...z]|x1,...,21 € D, for some k > 1 such that
|z1...zk] <d+max{ |z| |z € Dy}}
Dy, = {xy...x|z1,...,7% € Dy for some k > 1 such that

|z1...zk] <d+max{ |z| |z € Dy}}
A = AU
{($0$13y0)7 (xﬂayﬂyl)v (wUxayUyl) | (x()a?JO) € A,$ € Dm
' € D), and y' € D)}

Correctness. It is obvious that L(vy') C L(7), hence Lf(y") C L(v).

Let (o1 ... Zm,Yoy1 - - - Yn) be a complete computation of y. If |xg| > |yol,
then |z9| — |yo| < d. Let j be the smallest index (1 < j < n) such that
ly1...y;| > |zol — |yo| (or such that |yi...y;| = |zo| — |yo| if m = 0), then
ly1...yj| <d+max{|y| |y € D¢}, hence y; ...y; € D).
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Now 0 < |yoyi...y;j| — |zo| < d. Assume that 0 < |yoy1...y;j| — |zo]
(otherwise we proceed with the next paragraph). Let ¢ be the smallest index
(1 <4 <m) such that |z1...2;| > |yoy1 ...yj| — |zo| (or such that |z ...2;| =
lyoy1 - .- y;| — |zo| if j = n), then |z;...2;] < d + max {|z| | ¢ € D,}, thus
x1...2; € D!,. And so on, until i = m and j = n.

Clearly this way of alternatingly adding an upper and a lower sticker to the
computation, such that the current sticky end is at least completely matched,
guarantees that in the end either we used one lower sticker ‘too many’ (if we
end with a lower sticker) or the computation is fair (if we end with an upper
sticker). In the former situation we make the computation of 4’ fair by using
the axiom (zo,yoy:1 ...y;) € A’ instead of (zo,y0) € A'.

The case where |yg| > |zo| can be treated analogously (if |zg| = |yol|, then
use the axiom (zpz1,y0) € A’ and find the smallest index j (1 < j < n) such
that |y1...y;| > |z1| etcetera).

Consequently also L(y) C L¢(7"). O

Note that the computations in 4" constructed in the previous proof are not only
fair, but also primitive.

Corollary 9.7 SL C SL,¢

We know from Lemma 8.2 that ba*b ¢ SLy, and from Example 7.1 that ba*b €
SLp. Hence SL, € SL;.

Moreover, Example 7.2 shows that the non-regular language K = {z €
{aa,bb}* | #4(x) = #4(x)} is in SLy. Obviously K cannot be in SL,, hence
SLy € SL,.

Lemma 9.8 SL, and SL; are incomparable.

Furthermore, because of the language K we can refine the inclusion SL C SLy
to a proper inclusion.

Corollary 9.9 SL C SLy

9.4 Primitive fair computations

Clearly the primitive fair sticker languages combine some properties of primitive
and fair sticker languages: when only primitive computations are concerned,
one has some control over when a computation ends, while fairness allows one
to count and thus to generate non-regular languages. Therefore, the following
two examples are not surprising.
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Example 9.2 The regular language ba*b, that is in SL, but not in SL nor in
SLy, is in SL,: consider the sticker system

v = ({a, b}, id, {aa, ab},{aa, b}, {(ba, baa), (b,ba), (bb,bb)}),

that differs only from the sticker system given in Example 7.1 in the axiom
(ba,baa). Primitive fair computations that start with (b, ba) always generate
an odd number of a’s:

[b){a b) [b)(aa) (a b)
[0 a){b) [b a){aa)(b)

while the primitive fair computations of 7 that start with (ba,baa) always
generate an even number of a’s:

etcetera,

[ba)(a b) [ba)(aa) (a b)
[ba a)(b) [ba a)(aa)(b) cteetera.
Clearly the three axioms of v ensure in this way that L,¢(y) = ba*b. O

Example 9.3 Let v = ({a,b,c},id, Dy, Dy, A) be the sticker system defined
by

D, = {bbc,a,ac}
Dy, = {caa,cb,b}
A4 = {6}

There are only two ways for a (long enough) primitive computation to start:

[ Haad [ ba
Me a a) De b

Both these ways leave a sticky end consisting of one ¢ in the upper strand,
which is the same as the sticky end left by the axiom. Hence each primitive
computation of v is composed of two ‘building blocks’, one of which consists of
the upper stickers a and ac and the lower sticker caa, and the other of upper
sticker bbc and lower stickers cb and b. The only way to end a computation is
with such a block of a’s (use upper sticker a instead of ac).

Furthermore, note that each block of a’s as described above uses two upper
stickers and one lower sticker, whereas each block of b’s uses one upper sticker
and two lower stickers. Therefore, primitive computations of v are only fair
when an equal amount of blocks of a’s and blocks of b’s is used. Consequently,

Ly;(y) = {w € {caa, cbb}* - caa | #a(w) = #p(w)}. O

Because of these examples we now also have



106 A HIERARCHY OF STICKER FAMILIES

Lemma 9.10 SL C SLpf, SLpf — SLf # & and SLpf — SLp #* .

In view of the previous results on primitive and fair sticker languages, i.e., (1)
each fair sticker language is a BCA-language because a BCA can keep track of
both the sticky ends and the numbers of stickers used in a computation, and
(2) each primitive sticker language is regular since simulation of non-primitive
computations by a DFA can be prevented by removing all transitions that start
in the final state, the following lemma is not very surprising.

Lemma 9.11 SL,; C 1BCA

Proof. In the proof of Theorem 8.1, where we show that each fair sticker
language is a BCA-language, we use BCA's By, o With L(Bugy) = L(Vao,w)s
where v = (3, p, Dy, Dy, A) is the sticker system under consideration, (zg,yo)
is in A and vz, = (2, p; Du, De, {(z0,90)})-

Clearly, if we remove all transitions starting in the final state of By, yq,
we have a BcA B! with L(Bl, ) = Lpf(Vwoy,)- Consequently Lyr(y) =

) CL’O;?‘JO z0,Y0
U(a:o,yo)eA L(B, 4,) 1 a BCA-language. 0

Combining 1BCA C COD(SL,) (Lemma 9.2), the previous lemma and the fact
that 1BCA is closed under codings now gives the following result.

Corollary 9.12 SL,; C 1BCA = COD(SL,y)

Concerning SL,, and SL¢, the problem of finding constructions to change prim-
itive or fair computations into primitive fair computations is still open (i.e., it
is open whether SL, C SL,r and SLy C SL, 7). The problem here is that one
should avoid that non-primitive or non-fair computations, respectively, become
primitive fair.

9.5 Summary

We recall the most interesting results of this chapter:
1. SL C SL,, SL C SLy, SL C SL,y,

2. SL, and SLy are incomparable,

w

. SL,; C 1BCA,

S

. SLpf — SLf # @ and SLpf — SLp #* O,
5. a*ba* € SL,.

There were also some problems that we could not solve: is a*ba*ba* € SL,, is
SLp g SLpf, and is SLf g SLpf?
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Chapter 10

Definitions, examples and
research topics

We describe a model of molecular computing that is based on boundary con-
ditions, that specify the boundaries within which a system may evolve. More
specifically, we consider forbidding conditions, that prevent certain things from
occurring, and enforcing conditions, that, under the right conditions, cause
certain things to occur.

10.1 Forbidding

Forbidding conditions describe the situation where a system will ‘die” whenever
a certain group of components (parts of molecules) is present in this system.
We formalize these conditions by forbidding sets, as follows.

Definition 10.1 A forbidding set is a (possibly infinite) family of finite lan-
guages over some alphabet X; these finite languages are called forbidders.

A language K C >* is consistent with a forbidder F' C ¥*, denoted K con F,
if F ¢ sub(K). A language K is consistent with a forbidding set F, denoted
K con F, if K is consistent with every forbidder in F. O

Example 10.1 Consider the forbidding set F = {{ab,ba},{aa,bb}} and a
language K C {a,b}*. Then it is easily seen that K con F if and only if K C K;
for some i € {1,2,3,4}, where K; = ab* Ub*, Ky = a*bUa*, K3 = ba*Ua* and
Ky =b*a Ub". d
For a forbidding set F we define the family of (F-)consistent languages

£(F) = {K | K con F)

109
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and the family of finite consistent languages
Ly (F) ={K | K is finite and K con F}.

Note that @ € L, (F) for every F.
We say that two forbidding sets F; and F; are equivalent, denoted F; ~ Fo,
if L(F1) = L(F).

Example 10.2 Suppose that {A} is a forbidder, contained in a forbidding
set F. Then K con {A} if and only if {A} € sub(K) if and only if K = @.
Since a language is consistent with F only if it is consistent with {A}, we have
L(F) = {2} 0

Example 10.3 Let {\,a,bb} be a forbidder and let ¥ = {a,b,c} be an al-
phabet. Then K con {\, a,bb} if and only if {\ a,bb} ¢ sub(K), which is
equivalent to {a,bb} Z sub (K) since A € sub (w) for each w € ¥*. Therefore
LN, abb}}) = £({H{a, bb}}) = {K | K C {b,e}*} U {K C 5 | bb ¢ sub (K)}.

O

Example 10.4 Let F be the forbidding set {{ba’b} | i > 1}, and let K C
{a,b}* be a language. Then K con F if and only if ba'b ¢ sub(K) for all
i > 1, ie., Kcon F if and only if K C {w € {a,b}* | ba'b ¢ sub (w) for all
i > 1}. Since the latter language equals a*b*a*, when we restrict ourselves to
the alphabet {a,b} we obtain L(F) = {K | K C a*b*a*}. O

From [ER, EH'00] we recall three basic properties of forbidding.

Proposition 10.1 Let F be a forbidding set and K a language.

(1) K con F implies sub(K) con F

(2) If K! C K and K con F, then K' con F

(3) If K1, K>, ... is an ascending sequence of languages with K; con F for all
i > 1, then (U;>, Ki) con F

The third property above follows from the definition of forbidders as finite sets.

Some other simple properties of forbidding are the following. From the
definitions it is immediately clear that, for two forbidding sets F and F' with
F' C F, we have L(F) C L(F').

Note that from property (2) it follows that K con F implies (KNK') con F,
for any K'. Hence it is also clear that L£(F) is closed under intersection: if
K con F and K'con F, then (K N K')con F.

Furthermore, £(F) is not closed under union. Take for instance F =
{{a,b}}, K = {a} and K' = {b}, then obviously K con F and K'con F,
whereas K U K’ is not consistent with F.
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10.2 Enforcing

In this section we formalize enforcing conditions, where the presence of a certain
group of molecules causes the presence of at least one member from another
group of molecules.

10.2.1 Definitions and basic properties

Definition 10.2 An enforcing set is a (possibly infinite) family of ordered
pairs (X,Y), where X and Y are finite languages over some alphabet ¥, with
Y # &; such a pair (X,Y) is called an enforcer.

A language K C ¥* satisfies an enforcer (X,Y) with X,Y C X*, denoted
Ksat (X,Y),if X C K implies YNK # @&. A language K satisfies an enforcing
set £, denoted K sat &, if K satisfies every enforcer in £. O

Let £ be an enforcing set. An enforcer (X,Y) € £ is applicable to a language
K if X C K. If (X,Y) is applicable to K, but Y N K = &, then (X,Y) is a
K-wviolator.

Example 10.5 The family £ = {({u, v}, {uv,vu}) | u,v € L1} is an enforcing
set. If K C X7 satisfies £, then K is closed under ‘weak catenation’: for
any two words u,v € K at least one of the words uv,vu is in K. Note that
there are infinitely many languages satisfying £, each resulting from a different
‘implementation’ of the weak catenation. O

Note the non-deterministic nature of enforcers (X,Y’), that is caused by al-
lowing Y to include more than one element and by requiring that, given an
enforcer (X,Y) and a language K, if the set X of premises is included in K,
then at least one element of the set Y of consequences will be included in K.

Example 10.6 Let £ be the enforcing set {(&,{b"}) | n is even }. We refer
to each enforcer (&, {b"}) as a ‘brute’ enforcer, because its premise, the empty
set, is included in every language. Thus if K satisfies £, then K must contain
the language {b" | n is even }. O

For an enforcing set &,
L(E) ={K | Ksat £}

is the family of (&-)satisfying languages. Similarly, the family of finite satisfying
languages is defined by

Lin(€) = {K | K is finite and K sat £}.

We say that two enforcing sets £ and £ are equivalent, denoted & ~ &, if

L(&1) = L(E).
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It is obvious that £(€£) C L(&') for any two enforcing sets & and £’ with
E'CE.

Considering closure under intersection and union, the following two small
examples show that £(£) is closed under neither of the two operations. Let
& ={({a},{b,c})}, and let K = {a,b} and K' = {a,c}, then obviously both
K and K’ satisfy £, but K N K' = {a} does not. On the other hand, if
& ={({a,b},{c})}, K = {a} and K' = {b}, then it is clear that KUK’ = {a, b}
does not satisfy £ while both K and K’ do.

Note some essential differences between forbidding and enforcing: a forbid-
der describes a (finite) group of subwords that should not occur together in
a language consistent with this forbidder, whereas an enforcer gives a relation
between two (finite) groups of words in a language satisfying this enforcer. As a
consequence of this, a single forbidder may cause the absence of infinitely many
words, while a single enforcer may cause the presence of one of only finitely
many words.

10.2.2 Evolving through enforcing

Let Ky be a language, £ an enforcing set, and assume that it is not true that
Kysat &, i.e., there are (X,Y) € £ with X C Ky while Y N Ky = @. Now
add, for each of these Ky-violators (X,Y’), at least one element of Y to K,
and denote by K the (possibly infinite, even when K is finite) superset of Ky
constructed non-deterministically in this way. Then clearly none of the Kj-
violators is a Kj-violator, but some enforcers that were not applicable to Kj
may be applicable to K; and thus may become K;-violators. If so, then repeat
the construction described above, and so on. This iterative ‘repair procedure’
is illustrated in Figure 10.1.

The underlying idea of this ‘evolving procedure’ is formalized as follows,
in a more general way, that reflects the fact that when such an ‘enforcing
reaction’ takes place in reality (i.e., in nature or in a laboratory), the premises
of the reaction may be consumed (i.e., disappear) during the creation of the
consequences.

Definition 10.3 For an enforcing set £ and languages K and K’ we say that
K' is an E-extension of K, written K ¢ K', if X C K implies K'NY # @, for
each (X,Y) € €. O

Hence in general it is not necessarily the case that K C K', as was the case for
the procedure described above.

The £-extension relation expresses the basic computation step induced by
&: a molecular system that has to satisfy £ evolves according to F¢. It is also
our basic notion for studying computations in the forbidding-enforcing systems
that we describe later.
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Ky
Ky Zo Kj-violators are
K satisfied by K1 = Ko U %
K A K-violators are
satisfied by K9 = K1 U Z;

K,

Figure 10.1: Iterative repair procedure

The following proposition from [ER, EHT00] says that the iterative repair pro-
cedure above yields the desired result.

Proposition 10.2 Let £ be an enforcing set and let Ky, Ko,... be an infi-
nite ascending sequence of languages. If K; Fg¢ K;y1 for each i > 1, then

(Uis1 Ki) sat €.

It is instructive to see that the previous result in general does not hold for finite
ascending sequences: take for instance & = {({a}, {b}), {a,b},{c})}, and let
K, = {a} while K3 = {a,b}. Then K; C K3 and K; F¢ Ky whereas K; U K»
does not satisfy £. This agrees with our intuition: the molecular reactions go on
all the time, providing that the needed components (molecules) are available.
Thus such reactions may lead out of a finite language.

10.2.3 A finitary normal form

In this subsection we consider a normal form for enforcing sets. We begin by
distinguishing two finiteness properties of enforcing sets.
For a finite language Z we define £(Z) = {(X,Y) e & | X = Z}.

Definition 10.4

(1) An enforcing set & is finitary if, for each finite language Z, £(Z) is finite.

(2) An enforcing set &£ is weakly finitary if for each finite language K; there
exists a finite language K5 such that K k¢ Ko. O

If an enforcing set £ is finitary, it means that, for each premise set, £ contains
only a finite number of different enforcers having this premise set. This is a
syntactic feature of £. On the other hand, the property of being weakly finitary
is more of a semantic property — it says something about the effect that the
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enforcing specified by £ has on finite languages. This effect is required to be
‘continuous’: each finite language can always evolve according to £ into a finite
language. Thus one can start with a finite language and evolve it according to
£ in a smooth way without ‘exploding in one step’ into an infinite set.

The basic relationship between finitary and weakly finitary enforcing sets
is given by the following result ([ER, EHT00]).

Proposition 10.3
(1) Every finitary enforcing set is weakly finitary.
(2) There exist weakly finitary enforcing sets that are not finitary.

The fact that every finitary enforcing set is also weakly finitary follows from
the definitions.

The non-finitary enforcing set £ = {(&, {a,b"}) | n > 1} illustrates fact (2)
above: clearly, for any finite language K, we have K ¢ K U {a}, hence € is
weakly finitary.

Another result from [ER, EHT00] says that languages K that satisfy fini-
tary enforcing sets £ play for their finite subsets the role of the universe (3*),
meaning that each finite subset of K can evolve according to £ to another finite
subset of K.

Proposition 10.4 Let £ be a finitary enforcing set, and let K be o language
such that K sat €. For every finite language L C K, there exists a finite lan-
guage L' C K such that L'tg L'.

Note that the above result does not hold if we require that £ is weakly finitary
rather than finitary. To see this consider again the weakly finitary enforcing
set £ = {(9,{a,b"}) | n >1}. Let K = {b" | n > 1}, then obviously K sat &.
Now let L C K be finite and assume that L F¢ L' for a finite language L' C K.
Let m = max{n | b" € L'} and consider the enforcer E = (@, {a,b™'}).
Obviously L' N {a,b™*'} = @, contradicting L ¢ L'. Hence L' cannot be
finite if it has to be a subset of K.

The following theorem is one of the main results of the forbidding-enforcing
theory ([ER, EHT00]).

Proposition 10.5 For every enforcing set there exists an equivalent finitary
enforcing set.

We show the idea behind the construction described in [ER] to create an equiv-
alent finitary enforcing set for a given £. That construction is rather sophis-
ticated, because superfluous enforcers that may result from it are prevented
beforehand. We use here a brute force technique and remove superfluous en-
forcers afterwards. We see this brute force technique as the idea behind the
construction in [ER].
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Example 10.7 Let X = {a,b,c,d, e}, and let £ be the enforcing set

{ (e} {a,0}), (e} {a,d}) s (e}, {b,e}) } U{({e}, {c"}) [n = 2}.

Note that £ is satisfied by any language not containing e.

We create a finitary equivalent of £ by trying to satisfy the enforcers from
€ one by one, in an arbitrary but fixed order (we choose the order as written
above). Because we use such an order, when we have to satisfy the i*" enforcer
in it, for an ¢ > 2, we can use the history of choices that we made to satisfy
the 4 — 1 previous enforcers. This history can be represented in a tree.
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The construction is as follows. A language K that satisfies £ should at least
satisfy ({e},{a,b}). Assuming that this is the case — i.e., assuming that if
K contains the word e, then it also contains a or b — the next enforcer in
&, ({e},{a,d}), can be replaced by two new enforcers: ({e,a},{a,d}) and
({e,b}, {a,d}).

Then we assume that ({e,a}, {a,d}) and ({e,b},{a,d}) are also satisfied.
In other words, we assume that K contains the words e and a (and a), or the
words e, a and d, or the words e, b and a, or the words e, b and d. Now
we can replace the enforcer ({e}, {b,c}) € £ by four new ones: ({e,a}, {b,c}),
({e,a,d},{b,c}), ({e,b,a},{b,c}) and ({e,b,d}, {b,c}).

In the next step we have to satisfy ({e},{c?}) while assuming that the
seven enforcers constructed above are satisfied. Therefore we add the eight
enforcers ({e,a,b},{c*}), ({e,a,c},{c*}), ({e,a,d,b},{c?}), ({e,a,d, c},{c*}),
({e;b,a}, {c*}). ({e,b,a,c},{c?}), ({e.b,d},{c*}) and ({e,b,d,c}, {c*}) (actu-
ally these are seven enforcers, since ({e,a,b},{c?}) is constructed for two rea-
sons). And so on for ({e},{c?}), etcetera.

Of the new enforcers introduced above, several can be removed, either be-
cause they are trivial (the enforcer ({e,a},{a,d}) is trivial, for instance, since
if {e,a} C L for some language L, then automatically {a,d} N L # &), or be-
cause their goal is already achieved by another enforcer (e.g., ({e,a,d},{b,c})
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is superfluous because of ({e,a},{b,c})). In Section 11.2.2 we describe when
enforcers may be removed in general.

Now let £ consist of the enforcers constructed above that are neither trivial
nor superfluous, i.e.,

({e}{a,6}), ({e, b}, {a,d}), ({e,a},{b,c}),
({e.a,0},{c*}), ({e;a, ¢}, {*}), ({e;b,d},{”}), ...

Then &' is equivalent to £ and finitary (but still infinite; in fact, there is no
equivalent finite enforcing set, by the proof of Lemma 11.12). O

10.3 Combining forbidding and enforcing

10.3.1 Definitions and examples

Definition 10.5 A forbidding-enforcing system (fe system for short) is a con-
struct I' = (F, ), where F is a forbidding set and £ is an enforcing set. O

The corresponding forbidding-enforcing family (fe family), denoted L(F,E),
consists of all languages that are both F-consistent and £-satisfying. Hence

L(F,€) = L(F) N LE).

Example 10.8 Let ¥ = {a,b} and let I' = (F, &) be the fe system obtained
by combining the forbidding set F = {{aa,bb},{ab,ba}} from Example 10.1
and the enforcing set £ = {(@,{b"}) | n is even} from Example 10.6. Then a
language K C X* is in £(F,€) if and only if K = K" U {b"™ | n is even} where
either K’ C ab* U b* or K' C b*a U b*. O

Similar to the situation with forbidding and enforcing sets, we have the follow-
ing property: if 7/ C F and £ C &, then L(F,E) C L(F',&"). Another fact
that can easily be verified is the equality L(FUF',EUE") = L(F,E)NL(F',E")
for any two forbidding sets F, 7' and any two enforcing sets &, &’

Using the closure properties of £(£) mentioned before it is clear that L(F, £)
is not closed under union or intersection.

We carry over the ‘finitary’ qualification of enforcing sets to fe systems in
the obvious way: an fe system I' = (F, ) is finitary if £ is finitary.

We now give some extensive examples to illustrate the general concept of
forbidding and enforcing. The examples discuss the representation of DNA
molecules, the formalization of the splicing operation, and the satisfiability
and Hamiltonian path problem.
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Example 10.9 DNA molecules, single or (partially) double stranded, can be
coded over a suitable alphabet of base pairs. For the matching base pairs we

may use the symbols (?), (;), (§)7 (%) For the single stranded pieces we can

use (?), (t), (C), (g) (upper strand) and (é), (:c), ((':), () (lower strand). For
this example we consider languages over the alphabet qu,ase consisting of these
twelve symbols.

We will give some natural requirements on a formal language representing
the set of linear DNA molecules. These requirements can be formulated in our
forbidding-enforcing framework.

First, of course, no molecule can have an unmatched base in the upper
strand next to an unmatched base in the lower strand. This leads to forbidders

{ () }and { (5)(7) } for each 0,7 € {a,t,c,g}.

Moreover, note that the molecule denoted by the string (?) (g) (C) (é) (t) is

also denoted by the inverted string (t) (%) (c) (%) (;) We use inv to denote the
operation of inversion, which is the composition of mirror image and replacing
each symbol (;) by (Z) Thus, in general, if x denotes a molecule «, then
also inv (z) denotes «. Consequently, we need an infinite number of enforcers:

({z}, {inv (z)}) for all z € B} .

The above set of forbidders and the set of enforcers together yield an fe
system that admits only correct and all correct descriptions of linear DNA
molecules. Hence we have: K C E,‘; se 18 in the fe family defined by the above
forbidders and enforcers if and only if K is a correct description of a set of

linear DNA molecules.

The effect of cutting such molecules by restriction enzymes (see Chapter 1)
can easily be translated into enforcing rules. E.g., for the restriction enzyme

Tagl (see, e.g., [NEB]) we have the enforcer ({z(;) (g) (&) (?)y}, {z (;) (g) (O

for each pair z,y € Z,‘; se- Note that we have enforced only one of the two halves,
the other follows by the palindromicity of Taql and the inversion enforced above.

Recombination is then modelled by reversing the rules. E.g., ligating two
pieces with overhang gc (one resulting from cutting with Taql and the other a
sticky end produced by the restriction enzyme Narl (see, e.g., [NEB])) can be

enforced by

(0 R OO Q@0 QB ).

a

Example 10.10 In splicing systems (Part I) the above operations are ab-
stracted to the notion of splicing rules. The effect of a splicing rule (uy, vy, ug, ve),
which says that two words ziujviyr and zausvseys can be spliced to form the
word xjujv2y2, can be described by an enforcing set as follows:

{({z1u1v191, Z2U2V2Y2 }, {T1U1V2Y2}) | 1, 22, y1, Y2 € B}
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More attractively, and more directly, one may have the rules of the form
({z,y,r},{w}) where r is the restriction enzyme (after all it is a molecule)
and z and y are spliced into w according to r. This seems to be attractive be-
cause, as various molecules are created during the evolution of such a system,
new (restriction) enzymes may become available and so their effects will also
be produced — in this way we can deal with dynamically changing sets of rules.

A splicing rule (u1,v1,u2,v2) may be specified in its usual string repre-
sentation wui#v$us#ve, whereas an enzyme may be given by its amino acid
encoding, hence by a word over an alphabet of 20 symbols. O

Example 10.11 We explain how to describe an instance of the satisfiability
problem by an fe system. Let U = (-1 V 23V z6) A (mx1 V 22 V —z6) be a
Boolean formula in 3-conjunctive normal form (see, e.g., [GJ79]). It consists of
two clauses, each of which has to be satisfied.

The two possible truth assignments to the variable x; can be encoded
as the strings xbin (i)f for ‘z; is false’ and xbin (i)t for ‘z; is true’, where
bin (¢) € {0,1}* is a suitable binary encoding of i. Any language coding a
truth assignment must have exactly one of the assignments for each variable.
This can be achieved by having the brute enforcers (&, {xvf,xvt}) for each
v € {0,1}* (this constitutes the enforcing set £r7), and by having the forbidder
{xvf,xvt} for each v € {0,1}* (this constitutes the forbidding set Fy/).

Besides these universally valid restrictions, the formula ¥ itself places addi-
tional restrictions on the truth assignment. For instance, the clause =z Va3Vag
demands to assign true either to —x;, or to x3, or to x5. Equivalently, it de-
mands not to assign false to all of -z, 3, and zg at the same time, i.e., it
forbids the words x1t, x11f, and x110f to occur at the same time. Hence, the
first clause is represented by the forbidder {x1t,x11f x110f} and the second
clause by the forbidder {x1t,x10f, x110t}.

In this way, representing each clause by a forbidder, we get the forbidding set
Fy. Now the ‘universal’ forbidders and enforcers together with the forbidders
defined by the formula ¥ yield the fe system I'y = (Fy U Fy,Ey). This I'y
provides a succinct representation for the satisfiability of W: W is satisfiable if
and only if £(I'y) is non-empty. O

Example 10.12 We demonstrate how to transform an instance of the Hamil-
tonian Path Problem into an fe system, in such a way that each language in
the corresponding fe family consists of exactly one solution to this instance.

Let G = (V,E) be a directed graph with n nodes, and let z;, and z; be
designated initial and final nodes of G. A Hamiltonian path of G is a path from
Zin to xy that visits each node of G exactly once. Formally, it is a sequence
Z1,...,%y of nodes of G such that z1 =z, v, = zy, 2; # x; for i # j, and
(i, xiy1) € E for 1 <i < n.



FORBIDDING AND ENFORCING 119

Consider the alphabet A = {1,...,n}, and assume that V' = A. A path
Z1,...,Ty of G, where x; € V for all 1 <4 < m, is coded as the finite language
{1z1,2zy,...,n2,} C A%, meaning that z; is the i*" node on the path.

A forbidding-enforcing system (F, &) for which every language in the cor-
responding fe family is an encoding of a Hamiltonian path in G is constructed
as follows.

First we ensure that each possible solution starts in z;, and ends in zy,
by putting (@, {1z;,}) and (@, {nzs}) in €. Then, we guarantee that each
possible solution consists of a permutation of the nodes of GG, by adding, for
every 1 < i < n, the enforcer (@, {iz | € V — {zi,xs}}) to £, and the
forbidders {iz,jz} for each i # j where 1 <4,j < n to F. Finally we forbid
consecutive pairs of nodes between which there is no edge in G through the
forbidders {iz,i+ly} for (z,y) ¢ E and 1 <i < n.

Hence there exists a Hamiltonian path in G if and only if L(F,&) # @. O

10.3.2 The structure of computation in fe systems

We move now to consider the structure of computations in fe systems, and in
particular we claim that for finitary fe systems there is an elegant representa-
tion, in the form of a tree, of all the computations in such a system.

We use here the standard notion of a tree. The trees are rooted, node-
labelled, they may be infinite but are always finitely branching. This means
that each node has only a finite number of children (however, we do not assume
that there is a common bound on the number of children for each node). The
label of a node v in a tree 7 is denoted by lab . (v). We call a path in a tree a
full path if it starts at the root and either ends at a leaf or is infinite.

Definition 10.6 Let I' = (F,&) be an fe system, and let 7 be a tree.
Then 7 is a [-tree if
(1) each node label is an element of Lgy, (F),

(2) if a node vy is a descendant of a node vy, then lab _(v;) C lab _(v2) and
lab , (v1) k¢ lab (v2). O

Hence the influence of the forbidding set is expressed by the sort of node labels
that are admitted, while the influence of the enforcing set is expressed through
the condition on the sort of languages that can follow each other on a single
path — this is illustrated in Figure 10.2.

We now consider a I'-tree where all the languages from L£(I'), finite and
infinite, are represented.

Definition 10.7 Let I' = (F,&) be an fe system. A T'-tree 7 is complete if
(1) if K € L(I") is finite, then K is a node label of T,
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Figure 10.2: K, Ko € Lg,(F), K1 C Ko, and K; F¢ Ko

(2) if K € L(I') is infinite, then there exists an infinite path 7 in 7
such that K =, lab _(v). O

vem

We know already that finitary fe systems constitute a normal form for forbidding-
enforcing systems meaning that as far as the specifications of fe families are
concerned one can restrict oneself to finitary fe systems. However, the real
attraction of finitary fe systems stems from the following result ([ER, EH*00]).

Proposition 10.6 For each finitary fe system I' there exists a complete I'-tree.

This means that every finitary fe system I' can be ‘completely’ represented by

a complete I'-tree 7, that represents both all languages defined by I' and all

computations taking place within I':

(1) all finite languages in L(I') occur as node labels in T,

(2) by taking for each infinite path the union of all languages along this path
we get all infinite languages in £(T'),

(3) by following all full paths in 7 we get all evolving computations of I'.
Since finitary fe systems form a normal form for fe systems, one can repre-

sent all languages defined by an arbitrary fe system by a tree, viz., the I'-tree

of an equivalent finitary fe system I"'. What will not carry over is the structure

of computations in the original fe system; in particular, the label of a node in

the I'-tree is not necessarily an £-extension of the label of its parent, where £

is the enforcing set of the original fe system.

Proposition 10.7 For each fe system I' there exists o finitely branching tree
T with nodes labelled by finite languages such that for each language K,
K € L(T') iff there exists a full path m in 7 such that K = J,, lab . (v).

10.4 Research topics

Since forbidding-enforcing is a new model of computation, there are many stan-
dard (formal language theory) issues to investigate. In Chapter 11 we discuss,
among other subjects, finite versus infinite forbidding and enforcing sets, nor-
mal forms, and deterministic versus non-deterministic enforcing sets.
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A number of results concerning fe systems deal with the fact that for an
infinite ascending sequence of languages satisfying certain properties their union
satisfies the same, or closely related, properties. In Chapter 12 we generalise
Propositions 10.1(3) and 10.2, that both deal with sequences of languages in
forbidding or enforcing families, and we discuss the different role that finite
languages play in the forbidding-enforcing model when compared to standard
formal language theory (grammars and automata).






Chapter 11

Properties of forbidding sets
and enforcing sets

We discuss some basic formal language properties of forbidding sets and en-
forcing sets: finiteness versus infinity, normal forms, and determinism versus
non-determinism in enforcing sets.

11.1 Forbidding sets

11.1.1 Finite forbidding sets

Consider the forbidding set F; = {{ab}, {a?b?}, {a®b3},...}. Clearly, if a lan-
guage does not contain the subword ab, then it also does not contain the sub-
words a’b® for each i > 2, since they all contain ab as a subword. Consequently
F1 is equivalent to the finite forbidding set F» = {{ab}}.

Not every infinite forbidding set has a finite equivalent, as demonstrated by
the following theorem.

Theorem 11.1 There are forbidding sets for which there is no equivalent finite
forbidding set.

Proof. For a finite forbidding set F, let £ = max{|w| | w € Upcr F'}. Now,
if for two words « and y it is the case that sub (z)|<¢ = sub(y)|<¢, then F
cannot distinguish between = and y. In other words, for each F' € F it holds
that F ¢ sub (x) if and only if F' Z sub (y), hence {z} € L(F) if and only if
{y} € L(F).

Now consider Feyen = {{ab’a},{ab'a},{ab%a},...}. For each ¢, the words
z = ab’a and y = ab"'a differ only on subwords of length greater than /.
Clearly {z} € L(Feven) if and only if {y} & L(Feven). Hence L(Feyen) # L(F)
for all finite F. O

123
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11.1.2 Two useful normal forms

We started the previous subsection with an example of a forbidding set that
could be reduced in size by removing certain parts of it. In this subsection we
formalize the conditions under which we can do the same for arbitrary forbid-
ding sets, i.e., we discuss how redundancy can be removed from an arbitrary
forbidding set without changing the family of consistent languages.

One kind of redundancy occurs within forbidders, as described in the fol-
lowing example and lemma.

Example 11.1 Consider the forbidder {a,b,ab}. A language K is consistent
with {a,b,ab} if a ¢ sub (K) or b ¢ sub (K) or ab ¢ sub (K). Clearly in each of
these three cases ab cannot be a subword of K, hence K con {a,b,ab} implies
K con {ab}. Conversely, if ab ¢ sub (K), then obviously {a,b,ab} Z sub (K).
Consequently K con {a,b,ab} if and only if K con {ab}, and we may replace
{a,b,ab} by its subset {ab}. O

The crucial point in the above example is the fact that a and b are subwords
of ab. In other words, the forbidder {a, b, ab} is not subword free and therefore
contains redundancy. This redundancy can be removed very easily, as shown
by the following lemma.

We call a forbidding set subword free if all its forbidders are subword free.

Lemma 11.2 For every forbidding set there exists an equivalent subword free
forbidding set.

Proof. Given a forbidding set F, consider ' = {sub,..(F) | F € F}, then it
is obvious that every F’ € F' is subword free. Moreover, it is clear that, for all
F € F and all languages K, F' C sub (K) if and only if sub,,,. (F') C sub (K).
Consequently L£(F) = L(F'). O

Another way of reducing redundancy is to remove superfluous forbidders, like
in the example given in Subsection 11.1.1. The crucial point there is the fact
that the forbidder {ab} consists of a subword of each of the other forbidders.
This observation can be generalised as follows.

Lemma 11.3 Let F be a forbidding set, and let Fy, Fy € F with F| # F.
If sub (Fy) C sub(Fy), then F ~ F — {Fy}.

Proof. It is clear that L(F) C L(F — {F>}). Moreover, F; ¢ sub(K) for a
language K implies sub (F}) ¢ sub (K). Since sub (F}) C sub (F5) then also
sub (Fy) € sub (K) which implies 5 Z sub (K), and thus L(F —{F>}) C L(F).
Consequently F ~ F — {Fy}. O
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As an aside, note that it may be that sub(F) = sub (F’), for two different
forbidders F and F' (this is the case for, for instance, the forbidders {a,ab}
and {b,ab}). Also note that this cannot occur when both F' and F' are subword
free, since then sub (F) = sub (F’) if and only if F = F' (Lemma, 2.1).

We can generalise Lemma 11.3 to removing a (possibly infinite) subset of a
forbidding set, instead of just one element.

Lemma 11.4 Let F and F' be forbidding sets with F' C F such that for each
F € F there is an F' € F' with sub(F') C sub(F). Then F' ~ F.

Proof. Clearly L(F) C L(F').

To prove that £(F') C L(F), note that the condition in the lemma means
that for each F' € F there is an F’ € F’ such that K con F’ implies K con F,
for a language K. Consequently, if K con F” for all F' € F', then also K con F
for all F' € F. O

We define two different forbidders F; and Fy to be subword incomparable if
neither sub (F}) C sub (F3) nor sub (F,) C sub (F;). We call a forbidding set F
subword incomparable if each pair of distinct forbidders F; and F is subword
incomparable. Note that if we have sub (F}) € sub (F,) for all F}, Fy, € F with
Py # F,, then we also have Fy € Fy for all Fy, Fy € F with Fy # F.

Lemma 11.5 For every forbidding set there is an equivalent subword incom-
parable forbidding set.

Proof. Let F be a forbidding set. Because of Lemma 11.2 we may assume that
F is subword free. Now define /' = {F' € F | there is no F”" € F such that
F" # F" and sub (F") C sub (F')}. Note that we need the subword freeness of
F to ensure that also forbidders that are different but have the same subwords
are represented in F' (by the set of maximal subwords of one of them).

It is clear from the definition that F’ cannot contain two different forbid-
ders F; and F, with sub (F}) C sub (F3) or vice versa, hence F' is subword
incomparable.

To prove that F' ~ F we will apply Lemma 11.4. Observe that indeed
F' C F, and that for each F' € F there is an F' € F' with sub (F’) C sub (F):
consider F' € F. Either F' € F', or there exists an F; € F such that F| # F
and sub (F1) C sub(F). Again, either F; € F', or we can find an F» € F
with F5 # F; and sub(F,) C sub(F}). In this way we obtain a sequence
Fy,F1,Fy ... in F such that Fy = F, F;11 # F; and sub (F;11) C sub (F}),
for each ¢ > 0. Because F is subword free, Fj;, # F; implies sub (Fj 1) #
sub (F;), and consequently sub (F;;1) C sub (F;). Since each sub (F;) is finite,
this implies that our construction ends in a finite number of steps, and we
finally find a forbidder Fj, € F such that Fj, € F' and sub (F)) C sub(F).
Hence Lemma 11.4 is applicable and thus we obtain F’' ~ F. O
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If a forbidding set is subword incomparable, then no forbidder can be removed
without changing the family of consistent languages.

Lemma 11.6 Let F be a forbidding set.
If F is subword incomparable, then L(F) C L(F — {F}) for every F € F.

Proof. It is obvious that £L(F) C L(F — {F}).

We prove the strictness of the inclusion by demonstrating that F' € L(F —
{F}) but not F' € L(F), for an arbitrary forbidder F' € F. Obviously, F' is not
consistent with itself, thus F' ¢ L(F).

Furthermore, since F is subword incomparable, sub (G) ¢ sub (F') for all
G € F — {F}, and thus also G Z sub (F') for all G € F — {F'}. Consequently
Fcon G for all G € F — {F}, and thus F € L(F — {F}). O

11.1.3 Minimal forbidding sets

We say that a forbidding set F is in minimal normal form if F is both sub-
word free and subword incomparable. Since obviously the forbidding set F’
constructed in the proof of Lemma 11.5 has both these properties, ‘minimal
normal form’ is indeed a normal form.

Lemma 11.7 For each forbidding set there exists an equivalent forbidding set
in minimal normal form.

A forbidding set in minimal normal form is indeed minimal, or ‘redundancy
free’, in the sense that removing one of its forbidders or even one element from
one forbidder yields a forbidding set that is not equivalent to the original one.
This follows from Lemma 11.6 and the following result.

Lemma 11.8 Let F be a forbidding set that contains a forbidder F = {f1,...,
fn,w} for some n > 1, with w # f; for all 1 < i < n, and let F' = (F —
{F}) U{F'}, where F' = {f1,..., fu}. If F is in minimal normal form, then
L(F") C L(F).

Proof. To prove L(F') C L(F) we need that, for all languages K, K € L(F')
implies K € L(F). Since the only difference between F and F' is that F'
contains F' instead of F', it suffices to prove that K con F’ implies K con F',
which is true because from F' C F it follows that F' Z sub(K) implies F ¢
sub (K).

It is clear that F’ con F' does not hold, because F' € F', thus to prove that
L(F)— L(F') # @, it suffices to demonstrate that F' con F, i.e., F' con F and
F'con G for all G € F with G # F.
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For F' to be consistent with F', we need F' € sub (F'), i.e., {f1,..., fn,w} &
sub ({f1,..., fn}). Since F' is subword free, we have w ¢ sub (f;) for all 1 <
i < n and hence w ¢ sub ({f1,..., fn}). Consequently F’con F.

Now let G € F with G # F. Then F'con G if and only if G € sub (F’),
which is the same as sub(G) € sub (F’). We know that sub (G) € sub (F),
because F is subword incomparable. Since F' C F and thus sub (F') C sub (F),
we now have sub (G) € sub (F'). Consequently F'con G for all G € F with
G # F. Therefore L(F') C L(F). O

Moreover, for each forbidding set there is only one equivalent forbidding set
that is in minimal normal form.

Lemma 11.9 If two forbidding sets F and F' are both in minimal normal
form and F ~ F', then F = F'.

Proof. It suffices to prove F C F'. Let F € F. Then F ¢ L(F) = L(F').
Hence there is an F' € F' such that F' C sub (F). Similarly, since F' € F',
there is an F" € F such that F” C sub (F'). Consequently sub (F") C sub (F),
and, since F is subword incomparable, F" = F. Hence sub (F') = sub (F"') and
so (by Lemma 2.1, since F and F' are subword free) we have F = F'. Thus
FeF. O

Hence the conclusion of this subsection is the following.

Theorem 11.10 For every forbidding set there exists a unique equivalent for-
bidding set in minimal normal form.

Because of this theorem, and since a forbidding set in minimal normal form
is indeed minimal, as demonstrated in Lemma’s 11.6 and 11.8, we introduce a
notation for it: min (F).

11.1.4 Maximal forbidding sets
For a forbidding set F, we define the set
max (F) = {K | K is finite and not K con F}.

Note that max (F) is also a forbidding set (i.e., a family of finite languages), and
that, since each F' € F is not consistent with F, it holds that F C max (F).
It is easy to argue that max (F) is maximal in the sense that it cannot be
extended by adding a forbidder: in that case a new finite language is added
to max (F). This language can be either consistent or inconsistent with F. In
the former case it violates the definition of max (F), whereas in the latter case
it was already in max (F), since max (F) contains all finite languages that are
not consistent with F.
The following result shows that, for every F, max (F) is equivalent to F.
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Lemma 11.11 Let F be a forbidding set. Then F ~ max (F).

Proof. Since F C max (F) it is clear that L(max (F)) C L(F).

Now let K € L(F), i.e., for all F € F it holds that F' Z sub (K). We have to
prove that G ¢ sub (K) for all G € max(F). For each such G thereisan F' € F
with F' C sub (G). Since F' ¢ sub (K) it also holds that sub (G) Z sub (K),
which is equivalent to G ¢ sub (K). Hence K € L(max (F)). O

The names of min (F) and max (F), for a forbidding set F, are well chosen:
if F is subword free (which is a normal form), then min () C F C max (F),
and as we have seen above, min (F) and max (F) are minimal and maximal,
respectively, in the sense that nothing can be removed from min (F) without
changing the family of consistent languages, and no forbidder can be added to
max (F).

11.1.5 A tree representation for consistent families

Every language K can be described as a sequence of finite languages, namely
K = U;>¢ K|<i- Note that K|.; C K|<;41 for every i > 0, and that, if K and L
are different languages and ¢ is the length of a shortest word in (K —L)U(L—K),
then K|.; = L|<; for all 0 < i < £. Moreover, if F is a forbidding set, then it
follows from Proposition 10.1(2) and (3) that K con F if and only if K|.; con F
for all 4 > 0 (see also Section 12.4).

All these observations together suggest a representation of £L(F) by a tree
(rooted, finitely branching, with possibly infinite paths), in which the nodes
are labelled by finite languages consistent with F, i.e., the node labels are
elements of Lg, (F). The node labels on level ¢ are those languages in Lg;, (F)
that contain only words of length ¢ or smaller, for £ > 0 (and the root of the
tree has level 0). A node labelled X is the unique parent of a node with label
Y if and only if X # Y and X = {y € Y | |y| is less than the length of the
longest word in Y}, i.e., if and only if X is extended to Y by adding words of
one particular length that is greater than the length of the largest word in X.

11.2 Enforcing sets

11.2.1 Finite enforcing sets

In our approach we allow infinite enforcing sets. Unfortunately one cannot
restrict oneself to finite enforcing sets only. This is caused by the fact that
finite enforcing sets cannot have any effect on words longer than a certain
length and thus have influence on only a finite number of words. Consequently
the following lemma can be proved.

Lemma 11.12 If £ is a finite enforcing set, then L(E) contains a finite lan-
guage.
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Proof. If £ is a finite enforcing set, then we can define n = max{|jw| |w €Y
for some (X,Y) € £}. Thus the finite language 3|, satisfies £, because for
every enforcer (X,Y) € £ it holds that Y N X|., # @. Consequently L£(£)
contains a finite language. O

Indeed, this lemma implies that finite enforcing sets are strictly less powerful
than infinite enforcing sets.

Lemma 11.13 There are enforcing sets for which there is no equivalent finite
enforcing set.

Proof. Let a € 3, and let £ = {(&, {a})} U{({w},{wa}) | w € £T}. Clearly,
at C K forall K € L(£). Consequently £(€) does not contain a finite language,
thus by Lemma 11.12 cannot be defined by a finite enforcing set. O

11.2.2 Normal forms

Apart from the finitary normal form for enforcing sets described in Subsec-
tion 10.2.3, two other normal forms can be proved.

First, an enforcer may be superfluous on its own: enforcers (X,Y) with
X NY # @ are always satisfied and therefore can be omitted. These enforcers
are called ‘trivial’ in Example 10.7.

Second, some enforcers make other enforcers superfluous, as shown below.

Lemma 11.14 Let £ be an enforcing set, and let (X,Y) and (X',Y') be two
different enforcers in & with X C X' and Y CY'. Then € ~ &€ — {(X",Y")}.

Proof. It is clear that £(£) C L(E — {(X',Y")}).

To prove that £(€ — {(X',Y")}) C L(£) we show that K sat (X,Y) implies
that K sat (X',Y”), for (X,Y) and (X',Y’) as in the statement of the lemma.
If X' C K then X CK,hence YNK #@,andso Y NK # &. O

Hence we may always assume that, for the enforcing set £ under consideration,
for each enforcer (X,Y’) € £ it holds that X NY = &, and for each pair (X,Y")
and (X', Y’) of enforcers it holds that X ¢ X' or Y Z Y.

11.2.3 Deterministic enforcing sets

In connection with Example 10.5 we mentioned the fact that the definition of
enforcer allows non-determinism in the sense that, for an enforcer £ = (X,Y),
if E is applicable to a language K but not satisfied by K, then to make K
satisfy F it suffices to add any non-empty subset of Y to K. Obviously, there
is no non-determinism involved if Y is a singleton.
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Thus we call an enforcer (X,Y) deterministic if |Y| = 1, and we say that
an enforcing set is deterministic if all its enforcers are deterministic.

Deterministic enforcing sets are less powerful than non-deterministic ones,
i.e., every enforcing family defined by a deterministic enforcing set is — by
definition — also defined by a non-deterministic enforcing set, but not the other
way around.

To explain this, consider the enforcing set £ = {(@, {a,b})}, that is non-
deterministic and for which £(€) = {L | L contains a or b} (where a # b). Since
o & L(E), the family £(D) of languages satisfying an equivalent deterministic
enforcing set D should also not contain @, which means that D should contain
at least one enforcer of the form (&, {z}) for some word z. Now, if z # «a
and z # b, then £(D) does not contain the languages containing a or b but
not z. Moreover, if z = a, then none of the languages containing b but not a
satisfies D, and similarly for the case that z = b. Hence L£(D) # L() for every
deterministic enforcing set D.

Another way to argue that £ cannot be equivalent to D is the observation
that £(€) contains disjoint languages, whereas £(D) cannot contain disjoint
languages because of (&, {z}).

The non-deterministic enforcing set £ from the previous two paragraphs is
rather special because the only enforcer is ‘brute’, i.e., of the form (&,Y). To
demonstrate that this is not the only reason why deterministic enforcing sets are
less powerful than non-deterministic ones, in the proof below we give another
non-deterministic enforcing set, that does not have this special property, and
we show that it also does not have a deterministic equivalent.

Theorem 11.15 There are enforcing sets without brute enforcers for which
there is no equivalent deterministic enforcing set.

Proof. Take the non-deterministic enforcing set £ = {({a},{b,c})} (where q,
b and c are different words), and observe £(£) N P({a,b,c}) = {9, {b}, {c},
{a,b},{a,c},{b,c},{a,b,c}}. If there exists a deterministic enforcing set D
with £(D) = L(£), then it should also hold that £(D) N P({a,b,c}) = L(E) N
P({a,b,c}). We show that there is no deterministic enforcing set D such that
the latter equation holds.

First, note that for D we only have to consider enforcers (X,Y) with X C
{a,b,c} and Y = {a} or Y = {b} or Y = {c}: if w € X for some w # a,b,c,
then we may discard this enforcer since it is not applicable to any language in
P({a,b,c}), whereas if Y = {w} for some w # a, b, ¢, then application of such
an enforcer (if possible) gives a language not in P({a, b, c}).

Second, note that D cannot contain an enforcer of the form (&,Y") for any
Y, since € does not contain enforcers of this form. In other words, £(€) contains
the empty language, thus £(D) should also contain &.

Third, we only have to look at enforcers of the form (X,Y") for which X N
Y = & (this is a normal form discussed in the previous subsection).
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From the above it follows that there are only nine possible enforcers for the
part of D that should define £(£) N P({a,b,c}):

({6}, {a})  ({a},{b})  ({a},{c})
({ch{a})  ({eh,{0}) ({6}, {c})
({b;ch,{a})  ({a,c},{0})  ({a, b}, {c})

For the three enforcers of the form (X, {a}) we have that the language {b,c}
does not satisfy them. Hence D should not contain any of these three enforcers.
The six other cases can be shown to be inappropriate in a similar way. Thus the
part of D that accounts for £(€) N P({a,b,c}) can only be empty, but in that
case the language {a} satisfies D, which should not be the case. Consequently
there is no deterministic enforcing set that is equivalent to £. O

One consequence of an enforcing set being deterministic is that it makes the
notions ‘finitary’ and ‘weakly finitary’ equivalent (see Subsection 10.2.3).

Theorem 11.16 Let £ be a deterministic enforcing set.
Then & is finitary if and only if £ is weakly finitary.

Proof. We prove that non-finitary deterministic enforcing sets £ cannot be
weakly finitary. Assume that, for a certain finite language X, the set £(X) is
infinite, i.e., £ is not finitary. Let K be a language such that X k¢ K. Since &
is deterministic, K must contain the set {y | (X, {y}) € £}, which is an infinite
set because £(X) is infinite. Thus K cannot be finite, and £ is not weakly
finitary.

Combining the above with Proposition 10.3(1) completes the proof of the
result. O

11.3 Summary

We summarize the more important results of this chapter. Both for forbidding
sets and for enforcing sets, we have shown how to remove redundancy from
these sets, by proving a series of normal forms. In the case of forbidding sets
we could even prove that for each forbidding set a unique redundancy free
equivalent can be constructed.

We demonstrated that these normal forms cannot always yield a finite equiv-
alent, i.e., we have proved that infinite forbidding and enforcing sets are strictly
more powerful than finite ones.

Furthermore, we have shown that non-determinism is an essential feature
of enforcing sets, in the sense that there are non-deterministic enforcing sets
for which there is no deterministic equivalent.






Chapter 12

Sequences of languages in
forbidding-enforcing families

A number of results concerning fe systems deal with the fact that for an infinite
ascending sequence of languages satisfying certain properties, their union satis-
fies the same, or closely related, properties. We generalise some of these results,
mainly by lifting them to converging sequences of languages (in the topologi-
cal sense). Furthermore, we discuss in detail the importance of (sequences of)
finite languages in forbidding and enforcing families.

In order to simplify notation, throughout this chapter we consider an arbi-
trary but fixed alphabet X, i.e. every word, language or family of languages is
over 3, unless clear otherwise.

12.1 Converging sequences of languages

By (K;)ien we denote the infinite sequence K1, Ko, ... of languages. We define
the distance between two languages K and L as follows:

0 if K =L
d(K,L) = { 9—min{|z| | z€KAL}  Stherwise

where K A L = (K — L) U (L — K) is the symmetric difference of K and L. It
is fairly easy to verify that d satisfies the usual requirements for (ultrametric)
distances ([BV96]):

1. d(K,L) =0 if and only if K = L,
2. d(K,L) = d(L, K), and
3. d(K, L) < max{d(K, M),d(M, L)}

where K, L, M are languages.
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For ¢ > 0 we have, by definition, d(K, L) < 27¢ if and only if K|, = L|,.
In other words: the longer the shortest word that ‘separates’ K from L, the
smaller the distance between K and L.

Let us now consider the usual notion of convergence: an infinite sequence
(K;)ien of languages converges to a language K if d(K;, K) — 0 when i — oo.
Hence the distance between elements of the sequence (K;);en and its limit K
will become arbitrarily small. As this distance is measured in terms of the
length of the shortest word in the symmetric difference, we can rephrase the
notion of convergence as follows.

Definition 12.1 An infinite sequence of languages (K;);cn converges to a lan-
guage K, denoted (K;);cny — K, if, for each £ > 0, there is an m > 1 such that
K|« = K| for every n > m. O

The following easy observation is a frequently used ‘technical tool’ in investi-
gating converging sequences of languages. Assume that (K;)jey — K. If X is
a finite language such that X C K, then there is an m > 1 such that X C K,
for every n > m.

Example 12.1

L. {a"})nen — @, since, for every £ > 0, {a"}|<y = @ = @] for all
n>40+1.

2. Analogously, (£*|spn)nen — @.

3. The ascending sequence of languages ({a',...,a"})nen converges to a™,
since {al,...,a’}|<p = a*| for all £ > 0.
4. Analogously, ({a',...,a", 0" ' })en — aT. Note, however, that this is

not an ascending sequence.
O

The framework of metric spaces has been proposed to deal with the semantics
of recursion (and with infinite computations in general) by Nivat ([Niv79], see
also [BV96]).

12.2 Forbidding-enforcing families are closed sets

We repeat Proposition 10.1(3), which is very useful in analysing families of
consistent languages.

Proposition 12.1 Let F be a forbidding set, and let (K;)ien be an ascending
sequence of languages. If K; con F for all i > 1, then (U, K;) con F.
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The following lemma is a generalisation of Proposition 12.1, in the sense that
we do not require a sequence of ascending languages, the union of which equals
a certain language K, but rather a sequence of languages converging to K.
Note that if (K;);en is an ascending sequence, then indeed (K;)ien — (U; Ki)-

Lemma 12.1 Let F be a forbidding set and K a language. If (K;)ien is an
infinite sequence of languages with (K;)ien — K and K;con F for all i > 1,
then K con F.

Proof. Assume that not K con F, i.e., there exists an F' € F such that
F C sub(K). Hence F' C sub(X) for a finite X C K. Since (K;)ien — K
there is an m > 1 such that X C K, for all n > m. Thus F' C sub (K,,), which
contradicts K, con F. O

An analogous result holds for enforcing sets.

Lemma 12.2 Let £ be an enforcing set and K a language. If (K;)ien is an
infinite sequence of languages with (K;)ien — K and K;sat € for all i > 1,
then K sat £.

Proof. Let (X,Y) € £ and choose k = max{ |w| | w € X UY}. Since
(Ki)ien = K there is an m > 1 such that K|y = K|<t. We know that
K, sat (X,Y), hence X C K, implies K,,, NY # @&. But X C K, if and
only if X C K, and K,, NY = KNY, since X and Y do not contain words
of length greater than k. Thus K,,sat (X,Y) implies K sat (X,Y). Conse-
quently, K sat (X,Y) for every (X,Y) € €. O

Lemma 12.1, Lemma 12.2 and the fact that £(F,&) = L(F) N L(E) directly
imply that £(F,E) is a closed set ([Smy92]), where a family of languages C is
called a closed set if, for each sequence (K;);cn of languages in C, (K;)ieny — K
implies that K € C.

Theorem 12.3 Let (F,E) be an fe system. Then L(F,E) is a closed set in
the topology induced by the metric d.

12.3 Evolving sequences of languages

The basic computational feature of an fe system is ‘evolving through enforcing’,
determined by the enforcing set of the system. It is formalized through the
extension relation, see Definition 10.3.

In this section we discuss sequences of languages in which each language is
an &-extension of its direct predecessor, for an enforcing set £. In other words,
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each language in such a sequence evolves into its direct successor according to
the £-extension relation F¢.

We recall an important result on infinite ascending evolving sequences, that
says that for such a sequence the union of the languages occurring in it satisfies
& (Proposition 10.2).

Note that, unlike in [EH'00], here we do not assume that K g L implies
K C L — the latter is also the setup in [ER]. (This assumption was made in
[EH'00] because we considered there ascending sequences of languages.) There-
fore, ¢ in general is not a transitive relation, although for ascending sequences
it is transitive. For example, take £ = { ({a},{b}), ({a},{c}), ({b},{a}) },
then {a} k¢ {b,c} F¢ {a}, but not {a} F¢ {a}. Because of this non-transitivity,
K; ¢ K1 seems to be a rather local property, even if it holds for every 7 > 1
in some sequence of languages (K;);en.

Still, the £-extension relation turns out to be strong enough to yield the
following result.

Theorem 12.4 Let £ be an enforcing set and K a language. If (K;)ien is an
infinite sequence of languages with (K;)ien — K and K; Fg K1 for all i > 1,
then K sat £.

Proof. Assume that (X,Y) € £ with X C K. Since X and Y are finite, we
can define £ = max{ |w| | w € X UY'}. Because (K;)jcny — K thereisan ¢ >1
such that K;|<p = K|, for all j > ¢, hence X C K; for all j > £.

Then Y N Ky # @ since X C Ky and Ky ¢ Kyy1. Because £+ 1 > ¢ we
have Kyi1|<r = K<k, hence Y N Ky =Y NK # . O

12.4 The importance of finite languages

In this section we consider (possibly infinite) sequences of (specific) finite lan-
guages — the underlying observation is that every language K can be written
in the form K = J,,~, K|<,. Note that (K|.,)n>0 converges to K.
Proposition 10.1 (2) and (3) together yield the following result, which states
that consistence of certain specific finite parts of a language K is necessary and

sufficient to ensure the consistence of K itself.
Theorem 12.5 K con F if and only if K|, con F for every n > 0.

For enforcing sets the situation is slightly different, because enforcers force the
presence of certain words, whereas forbidders prevent the occurrence of certain
sets of subwords (see also the remark at the end of Subsection 10.2.1).

We define £|p, to be {(X,Y) € & ||w| <nforallwe XUY}.

Theorem 12.6 K sat & if and only if K|, sat €|, for every n > 0.
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Proof. Assume that K sat £. Take an arbitrary n > 0, and consider (X,Y) €
E|<n. Obviously, X C K if and only if X C K|, and Y N K =Y N K|<y,.
Hence K sat € implies K|psat &|<p.

On the other hand, if K|, sat £|<y, for every n > 0, then it also holds that
(K|<n UX*|5p)sat € for every n > 0. Since (K|, UX*[p)n>0 — K, we can
apply Lemma 12.2 to obtain K sat &. O

Note that the sequence (K|<, UX*|.p)n>0 used in the proof above is descending
rather than ascending.

The membership of a language in an fe family is determined by its finite
portions only; this is an elementary consequence of the fact that these families
are closed sets.

Theorem 12.7 Let IC be an fe family, and K o language. If, for each n > 0,
there is an L € K with K|<p = L|<p, then K € K.

Proof. Let K = L(F,E), and let, for every n > 0, L, € K be a language with
Lypl<n = K|<p. Since (Ly),>0 — K, Theorem 12.3 gives K € K. O

We state now two interesting corollaries of Theorem 12.7.

Corollary 12.8 Let Ky and Ko be fe families.
If, for alln >0, {K|<n | K € K1} = {K|<n | K € K2}, then K1 = Ks.

Proof. Let K € K;. Then, according to the condition in the corollary, for
every n > 0 there is an L,, € Ky with K|, = Ly|<,. Hence by Theorem 12.7
we have K € Ky, and thus K; C K. Obviously, £ C K; can be proved
analogously. O

It is perhaps superfluous to remark that the implication of Corollary 12.8 does
not hold for arbitrary Ky and Ko, as can be seen by letting Iy and o be the
respective families of finite and infinite languages over a fixed alphabet.

Suppose that an fe family K contains all finite languages over a certain
alphabet A. Then K|, € K for each language K over this alphabet and each
n > 0, hence according to the theorem K € K for all K.

Corollary 12.9 Let K be an fe family and A C . If K contains all finite
languages over A, then it contains all languages over A.

This second corollary also follows directly from the definitions of forbidding
and enforcing, which is seen as follows. Let I = L(F,E).

If every finite L C A* is consistent with F, then every forbidder ' C A* in
F should be counsistent with F as well. Hence these forbidders cannot exist in
F. Consequently, every F' € F contains at least one symbol from ¥ — A and
thus M con F holds for all M C A*.
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Furthermore, enforcers (X, Y') such that X contains symbols from > — A are
obviously not applicable to languages over A. Now let (X,Y") € £ with X C A*.
Then X sat (X,Y’) should hold, since every finite language over A satisfies €.
In other words, it should be the case that X NY # &. Obviously, such an
enforcer is satisfied by every language. This ends our alternative explanation
of Corollary 12.9.

We consider now separately families of languages defined by forbidding sets
and families of languages defined by enforcing sets.

For forbidding families the finite languages are most crucial: in fact, they
determine the family.

Theorem 12.10 For all forbidding sets F1 and Fo the following holds:
L(F1) = L(F2) if and only if Lan(F1) = Lan(F2).

Proof. It is clear that L(F1) = L(F2) implies Lg, (F1) = Lan(F2).

Now let Lcon F;. Then L|.;con F; for all i« > 0, and because Lg,(F1) =
Ln(F2) also L|c;con Fy for all i > 0. Now Theorem 12.5 gives L con Fo.
Analogously it can be proved that L con F» implies L con Fj. O

Unlike for forbidding families, finite languages are not particularly important
for families of satisfying languages. This can be shown as follows.

Example 12.2 Let K be a language, and let (w;);cy be an arbitrary but
fixed ordering of the words of K. Similarly, let (v;);eny be an arbitrary but
fixed ordering of the elements of ¥>* — K. Now consider the enforcing set
&k = { (@, {w1}) YU{ ({wi}, {wir1}) |42 13U{ {vi}, {o1}), (i}, {viga}) |
i > 1}, then L(Ex) = {K,X*}.

Now clearly for every finite language K we have Lg,(£x) = {K}, whereas
for infinite K we have Lg,(6x) = @. Hence for any two different infinite
languages K and K' we have Lg,(§x) = Lan(Ex) = &, whereas L(Ex) #
E(gK/). Od

The results of this section point out a crucial difference between languages
defined by fe systems and languages defined by classical grammars, such as,
e.g., Chomsky grammars. As demonstrated above, finite languages are very
important for fe systems — they in fact determine fe language families. On
the other hand, finite languages are irrelevant for Chomsky grammars: if a
language L is of type X (regular, context-free, context-sensitive, ...), then so
are LU F and L — F, for every finite language F'.

12.5 Summary

We have extended Proposition 10.1(3) — that states that if every language in
an ascending sequence of languages is consistent with the forbidding set F,
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then the union of these languages is consistent with F as well — to the more
general notion of converging sequences of languages in forbidding, enforcing or
forbidding-enforcing families.

A similar result was known for infinite ascending evolving sequences of lan-
guages (Proposition 10.2). We have extended this result to infinite converging
evolving sequences.

Finally, we have illustrated that finite (parts of) languages are character-
istic for fe families, by showing that the membership of a language in an fe
family is determined by specific finite subsets of that language, that if an fe
family contains all finite languages over a certain alphabet, then it contains all
languages over this alphabet, and that two forbidding sets are equivalent if and
only if they define the same finite languages.
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Samenvatting

Gemotiveerd door een experiment van Adleman, dat gepubliceerd is in Science,
zijn informatici tegenwoordig geinteresseerd in de mogelijkheden die DNA kan
bieden om complexe berekeningen te maken. We hebben onderzoek gedaan
naar drie modellen die drie verschillende processen beschrijven die met (DNA-)
moleculen te maken hebben. Alledrie de modellen zijn opgesteld binnen de
formele-talentheorie, wat wil zeggen dat we moleculen weergeven als rijtjes
letters in plaats van als een complexe biochemische structuur. Zo’n rijtje letters
wordt een string genoemd, en een verzameling van strings heet een (formele)
taal. Een taal kan eindig of oneindig veel strings bevatten, en iedere taal heeft
een bepaalde moeilijkheidsgraad (behoort tot een bepaalde talenfamilie): de
eindige talen zijn eenvoudiger dan de oneindige, en binnen de oneindige talen
bestaan ook weer gradaties. Ook als een taal oneindig veel strings bevat, is er
vaak een eindige beschrijving van te geven. De moeilijkheidsgraad van de taal
wordt bepaald door het type beschrijving.

DNA

We leggen nu eerst kort uit wat DNA is en welke eigenschappen ervan door de
eerste twee modellen die we bekeken hebben beschreven worden.

De bouwstenen van DNA zijn vier basen (deelmoleculen), die worden aange-
duid met de letters a, c, g en t. Heel eenvoudig gezegd bestaat een (dubbel-
strengs) DNA-molecuul uit twee rijtjes basen, die complementair zijn: een a
plakt altijd op een t en andersom, en een c plakt altijd op een g en an-
dersom. Schematisch kan zo'n dubbelstrengs DNA-molecuul als volgt worden
weergegeven:

c g g

g ctc
Het kan ook voorkomen dat de bovenste of de onderste streng ontbreekt — dan
heet het een enkelstrengs molecuul — of dat er aan het linker- en/of rechteruitein-
de een enkelstrengs stuk uitsteekt (boven of onder). In het laatste geval noemen
we het molecuul gedeeltelijk dubbelstrengs. Enkelstrengs moleculen en/of uit-
steeksels kunnen aan elkaar plakken en zo een langer molecuul vormen, mits
de enkelstrengs stukken complementair zijn zoals hierboven beschreven:
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Dit aan elkaar plakken van enkelstrengs stukken DNA gebeurt spontaan (d.w.z.
vanzelf), en is een belangrijk onderdeel van Adlemans experiment. Het tweede
model dat wij bekijken — stickersystemen — is een formalisatie van dit spontaan
aan elkaar plakken.

Het eerste model dat we behandelen — splicingsystemen — is gebaseerd op
een andere eigenschap van DNA: de moleculen kunnen worden doorgeknipt door
restrictie-enzymen. Een restrictie-enzym zoekt altijd een bepaald rijtje basen
op in een DNA-molecuul, en knipt dan het molecuul door op een vaste plek
binnen dat rijtje, of juist een zeker aantal plekken verderop. Dit doorknippen
gebeurt niet noodzakelijk recht, maar soms met uitsteeksels zoals hieronder
aangegeven voor de enzymen Tagl en ScilNI:
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De zo ontstane moleculen met uitsteeksels kunnen dan weer aan elkaar of aan
andere geschikte uitsteeksels plakken.

We zullen nu één voor één de drie modellen die we onderzocht hebben
beschrijven.

Splicing

Splicingsystemen beschrijven de gevolgen van het in twee stukken knippen van
DNA-moleculen door restrictie-enzymen en het vervolgens spontaan weer aan
elkaar plakken van de stukken. (Het Engelse werkwoord ‘to splice’ betekent
‘verbinden’ of ‘koppelen’.) Omdat zo’n stuk van een DNA-molecuul niet alleen
aan zijn oorspronkelijke wederhelft gekoppeld kan worden, maar ook aan een
stuk dat van een ander molecuul is geknipt, ontstaat op deze manier uit de
beginverzameling moleculen een nieuwe verzameling.

Zowel de DNA-moleculen zelf als het knipgedrag van restrictie-enzymen
kunnen worden weergegeven als strings. Hieruit volgt dat een verzameling
moleculen gerepresenteerd kan worden door een taal, en een verzameling en-
zymen ook. Een splicingsysteem bestaat uit een begintaal (de moleculen) en
een regeltaal (de enzymen), en produceert zelf weer twee soorten talen: de een
bestaat uit alle strings die ontstaan door regels uit de regeltaal één keer toe te
passen op strings uit de begintaal, de ander uit alle strings die je kunt krijgen



door herhaald regels toe te passen op beginstrings, maar ook op strings die tij-
dens dit proces ontstaan zijn. In beide gevallen kun je bekijken welke invloed
de moeilijkheidsgraden van begin- en regeltaal hebben op de moeilijkheidsgraad
van de resulterende taal.

Ons onderzoek naar splicingsystemen gaat over drie verschillende aspecten
ervan. We zijn begonnen met het bekijken van andere stringrepresentaties van
enzymen dan de representatie die standaard in de literatuur gebruikt wordt.
Daaruit is gebleken dat het in de meeste (maar niet alle) gevallen niet uitmaakt
welke van de onderzochte representaties je gebruikt. Daarna hebben we aange-
toond dat in een aantal gevallen de moeilijkheidsgraad van regeltalen verlaagd
kan worden van (de eenvoudigste vorm van) oneindig naar eindig. Tenslotte
hebben we bekeken wat de hoogste moeilijkheidsgraden zijn die de resulterende
talen kunnen bereiken als je extra eisen gaat opleggen aan het toepassen van
regels op strings, zoals bijvoorbeeld ‘de resulterende string moet altijd langer
zijn dan de beide beginstrings’.

Stickers

Stickersystemen zijn een formalisatie van het spontaan aan elkaar plakken
van complementaire stukjes DNA. De stickersystemen die wij bekeken hebben
bestaan uit een eindig aantal gedeeltelijk dubbelstrengs beginmoleculen en
een eindig aantal stickers (enkelstrengs moleculen), die verdeeld zijn in twee
groepen: onder- en bovenstickers. Een berekening van een stickersysteem
bestaat uit een beginmolecuul met aan de rechterkant eindig veel boven- en
onderstickers eraan vastgeplakt, zodat een volledig dubbelstrengs molecuul
ontstaat; de bovenstickers mogen alleen in de bovenste streng gebruikt worden,
de onderstickers alleen in de onderste streng. Behalve aan complementaire uit-
steeksels mogen stickers hier ook aan (de rechterkant van) een molecuul zonder
uitsteeksel plakken. Een berekening kan er dan schematisch als volgt uitzien
(de twee blokjes zijn de boven- en onderstreng van het beginmolecuul, de hori-
zontale lijntjes stellen de stickers voor, en de verticale stippellijn geeft een posi-
tie aan waar een boven- en een ondersticker tegen een volledig dubbelstrengs
molecuul zijn geplakt in plaats van aan een complementair uitsteeksel):

S —
- '

Een berekening wordt fair genoemd als er evenveel boven- als onderstickers in
gebruikt worden, en primitief als iedere sticker aan een uitsteeksel geplakt is.
De berekening hierboven is dus niet fair en niet primitief.

De (gewone sticker-) taal van een stickersysteem bestaat uit alle strings die
bovenstrengen van berekeningen van dat systeem representeren; de stickertaal
heet fair (primitief) als je alleen naar faire (primitieve) berekeningen kijkt.



Ons onderzoek op het gebied van stickersystemen bestaat uit twee delen:
het vinden van een goede (d.w.z. zo precies mogelijke) bovengrens voor de
moeilijkheidsgraad van faire stickertalen, en het zoeken naar verschillen en
overeenkomsten tussen verzamelingen van gewone, faire, primitieve en primitief
faire stickertalen. Uit dit laatste onderzoek is onder andere gebleken dat de
gewone stickertaal (van een willekeurig stickersysteem) ook gegenereerd kan
worden met alleen maar faire berekeningen (door een ander stickersysteem), en
ook met alleen maar primitieve of alleen maar primitief faire berekeningen.

Forbidding en enforcing

Het derde model dat we onderzocht hebben beschrijft een heel ander soort
moleculaire systemen, die zich binnen bepaalde grenzen vrij kunnen ontwik-
kelen. In het bewuste model, forbidding-enforcingsystemen, wordt de ontwik-
keling van het systeem gestuurd door enforcingcondities maar tegelijkertijd
beperkt door forbiddingcondities.

Iedere enforcingconditie zegt dat wanneer een bepaald eindig groepje mole-
culen in het systeem aanwezig is er ook ooit minstens één molecuul uit een ander
eindig groepje zal ontstaan (door een reactie tussen de al aanwezige moleculen).
Dus de enforcingcondities zorgen ervoor dat er steeds nieuwe moleculen aan
het systeem worden toegevoegd. Forbiddingcondities daarentegen beperken
de evolutie van het systeem door bepaalde eindige groepjes deelmoleculen te
verbieden (het systeem gaat ‘dood’ als alle deelmoleculen uit zo’n groepje op
hetzelfde moment in het systeem voorkomen).

Net als in de andere twee modellen beschrijven we moleculen weer met
behulp van strings. In tegenstelling tot splicing- en stickersystemen levert een
forbidding-enforcingsysteem niet één enkele taal op, maar een hele verzameling
talen: alle talen die voldoen aan de condities.

We hebben onderzocht hoe we het aantal forbidding- en enforcingcondities
kunnen terugbrengen zonder de verzameling van talen die eraan voldoen te
veranderen. Het bleek dat je soms zelfs een oneindige set condities kunt ver-
vangen door een eindige set, maar lang niet altijd. Naast nog een paar andere
typisch formele-talenvraagstukken hebben we ook gekeken naar eigenschappen
van reeksen van talen die aan de condities voldoen, zoals reeksen waarin iedere
taal een uitbreiding is van zijn voorganger (willekeurig, of juist strikt volgens
de enforcingcondities), en convergerende reeksen. Zulke taalreeksen stellen in
zekere zin de ontwikkeling van het systeem voor, binnen de grenzen die door
de twee typen condities worden aangegeven.



Curriculum vitae

Nike van Vugt is geboren in Waspik, Noord-Brabant, op 23 januari 1972. Van
1984 tot 1990 bezocht zij het Dr. Mollercollege te Waalwijk, waar zij met lof het
Gymnasium B diploma behaalde. Van 1990 tot 1996 studeerde zij Informatica
aan de Universiteit Leiden, en slaagde daarnaast voor de propedeuse Franse
Taal- en Letterkunde en een aantal vakken van Algemene Taalwetenschap. De
laatste twee jaar van haar studie gaf zij ook werkgroepen aan studenten. In
1996 begon zij, nog steeds in Leiden, aan haar promotieonderzoek op het gebied
van de Theoretische Informatica (i.h.b. DNA computing), onder begeleiding van
prof. dr. G. Rozenberg en dr. H.J. Hoogeboom.






Titles in the IPA Dissertation Series

J.0. Blanco. The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-1

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-2

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementa-
tion. Faculty of Mathematics and Computer
Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-4

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Ma-
chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-5

D. Alstein.  Distributed Algorithms for
Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-6

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-7

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
8

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake
Clircuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-
mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-
gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems Engi-
neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-
tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller.  Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1998-04



A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping — A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-
tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, Univ. Leiden.
1999-04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selection.
Faculty of Mathematics and Natural Sci-
ences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimiza-
tion in Real-Time Distributed Databases.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to
satisfiability problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial Pro-
tocols with Formal Methods. Faculty of Com-
puter Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fabian. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction.  Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic.  Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A strati-
fied approach to the verification of distributed
algorithms.  Faculty of Mathematics and
Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicating
Processes. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-03

W.0.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechanical
Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics
and Natural Sciences, UL. 2001-01



R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observa-
tion and communication. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-
02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

ILLM.M.J. Reymen. Improving De-
sign Processes through Structured Reflection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-
tar and semantics. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2001-05

R. van Liere. Studies in Interactive Visual-
1zation. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of
Mathematics and Computing Science, TU/e.
2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology:
A Case-study into Acute Effects of Air Pol-
lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science, UT.
2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery protocols.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-11

M.D. Oostdijk. Generation and presenta-
tion of formal mathematical documents. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:
A simulation approach using x. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bosnacki. FEnhancing state space re-
duction techniques for model checking. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ez-
perimental aspects.. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-
fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complerity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-
cation of Probabilistic, Real-time and Para-
metric Systems.. Faculty of Science, Math-
ematics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07






