
Incomparability of simple and one-sided/regular

sticker languages

Peter Weigel and

Institut für Informatik, Fachbereich Mathematik/Informatik,
Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle/Saale, Germany

email: mail@stickersysteme.de, url: http://www.stickersysteme.de

Februar 2005

Abstract

This paper shows that any of the classes SSL(b) and SSL(n) is incomparable to
any of the classes OSL(b), OSL(n), RSL(b) and RSL(n). This answers some of
the questions left open in [KPG98], [FPR98], [PR98] and [PRS98] concerning the
expressive power of sticker systems compared to Chomsky grammars.

Key words: dna-computing, sticker system, chomsky grammar, complexity analysis

1 Introduction

In [Adl94] L.M.Adleman gives a procedure for solving the Hamiltonian Path
Problem (HPP) based on DNA strands. This procedure, known as Adleman's
Experiment, can be considered as the basis of the concept of sticker systems,
which was introduced in [KPG98] as regular sticker systems. Sticker systems
with capabilities of synchronizing the extension on the left and right were men-
tioned �rst in [FPR98] as bidirectional sticker systems. In [PR98] both concepts
were merged to a new concept called sticker systems. The de�nition of sticker
systems from [PR98] and a lot of results and proofs from [KPG98], [FPR98]
and [PR98] were thereafter summarized and supplemented in [PRS98].

Sticker systems are one of many ways for theoretical analysis of properties and
capabilities of DNA strands, which are interesting for language, computation
or complexity theories. Because the constructs of sticker systems, which can be
considered as grammars, are completely di�erent from Chomsky grammars, an
explicit analysis is needed. In [KPG98], [FPR98], [PR98] and [PRS98] there are

Preprint submitted to Elsevier Science 19 December 2009

a lot of proofs for relations between sticker language families among themselves
and Chomsky language families.

Here we will prove the incomparability of SSL(b) and SSL(n) with OSL(b),
OSL(n), RSL(b) and RSL(n) and therewith answer the open question of
[PRS98] regarding the relation between simple sticker languages and one-sided
or rather regular sticker languages. Thereafter, we will use this new result for
some interesting conclusions.

This work is based on the diploma thesis [Wei04] and only an abridged version
of the analysis given there. A more complex version of the proof from Lemma
3.1 was already published in [KW04].

2 Basic de�nitions

By N we denote the set of non-negative integers. The set of all subsets of a
set A is denoted by P (A). The empty set is denoted by ∅.

An alphabet is a nonempty, �nite set of abstract symbols. The elements of an
alphabet are called letters. Let Σ be an alphabet. A word over Σ is a �nite
sequence of letters of Σ. Σ∗ denotes the set of all words over the alphabet Σ
including the empty word ε. We de�ne Σ+ := Σ∗ \ {ε}. A language L over the
alphabet Σ is a subset of Σ∗. The complement of a language L is denoted by Lco

and de�ned by Lco := {w ∈ Σ∗ : w 6∈ L}. Let k, i ∈ N and w = a1a2 . . . ak ∈ Σ∗

be a word. We call wR := ak . . . a2a1 the reversion, |w| := k the length and
w[i] := ai the i-th letter of w if 1 ≤ i ≤ k. Additionally, we de�ne w[i] := ε
for i < 1 or i > k. The concatenation of two words u and v with u = a1 . . . ak
and v = b1 . . . bm is de�ned by u · v := a1 . . . akb1 . . . bm.

Let k ∈ N. Σk denotes the k-fold cartesian product of a nonempty set Σ. The
elements of Σk are called vectors. Let Σ1,Σ2, . . . ,Σk be a �nite sequence of
nonempty sets and x = (x1, x2, . . . , xk) ∈ Σ1×Σ2× . . .×Σk. We call x[i] := xi
the i-th component of x if 1 ≤ i ≤ k.

Let k ∈ N and λ : Ak → B be a partial mapping from Ak into B. In general,
we de�ne the extension λ : P (A)k → P (B) by

λ(X1, X2, . . . , Xk) :=

λ(x1, x2, . . . , xk) :
xi ∈ Xi for 1 ≤ i ≤ k,

λ(x1, x2, . . . , xk) is de�ned

 .

The reversion AR and the concatenation A ·B of two languages A and B are
therewith de�ned.

2

2.1 Sticker systems

Let V be an alphabet and ρ ⊆ V × V be a symmetrical binary relation.
There are

(
V ∗

V ∗

)
:=

{(
u
v

)
: u, v ∈ V ∗

}
the set of all pairs of words 1 of V ∗ and[

V ∗

V ∗

]
ρ

:=
{(

u
v

)
∈
(
V ∗

V ∗

)
: |u| = |v|, (u[i], v[i]) ∈ ρ for 1 ≤ i ≤ |u|

}
the set of all

pairs of complementary words of V ∗. For
(
u
v

)
∈
[
V ∗

V ∗

]
ρ
we write

[
u
v

]
ρ
. The

concatenation
(
x1

x2

)
·
(
y1
y2

)
is
(
x1·y1
x2·y2

)
. Analogously, we write

[
x1·y1
x2·y2

]
ρ
for

[
x1

x2

]
ρ
·
[
y1
y2

]
ρ
.

The set of all dominoes Wρ(V) is de�ned by Wρ(V) := Sρ(V) ∪ LRρ(V),

where Sρ(V) :=
{(

u
v

)
∈
(
V ∗

V ∗

)
: u = ε or v = ε

}
is called set of simple dominoes

and LRρ(V) := Sρ(V)×
([

V ∗

V ∗

]
ρ
\
{[

ε
ε

]
ρ

})
× Sρ(V) is called set of non-simple

dominoes. The set WK ρ(V) :=
{(

ε
ε

)}
×
([

V ∗

V ∗

]
ρ
\
{[

ε
ε

]
ρ

})
×
{(

ε
ε

)}
is called set

of complete dominoes. The domino
(
ε
ε

)
is identi�ed by ε and therewith we can

write
[
x
y

]
ρ
instead of

(
ε
ε

)[
x
y

]
ρ

(
ε
ε

)
.

Let x ∈ LRρ(V) and y ∈ Sρ(V) be two dominoes. xt1, x
b
1, x

t
2, x

b
2, x

t
3, x

b
3, y

t

and yb denote the single components of x and y with x =
((

xt
1

xb
1

)
,
[
xt
2

xb
2

]
ρ
,
(
xt
3

xb
3

))
and y =

(
yt

yb

)
. Additionally, we call x2 :=

[
xt
2

xb
2

]
ρ
the centerpiece, x1 :=

(
xt
1

xb
1

)
the left and x3 :=

(
xt
3

xb
3

)
the right delay of x. We write x = x1x2x3 instead of

x = (x1, x2, x3). The words yt and xt := xt1 · xt2 · xt3 are called upper strand.
Analogously, yb and xb := xb1 ·xb2 ·xb3 are called lower strand. The letters of the
single components are called bases.

The structure of a domino x is de�ned by the mapping struct : Wρ(V) →
W{(],])}({]}), whereby struct(x) arises from x by substituting all bases con-
tained therein by].

The length of the delay of a domino is de�ned by the mapping d : Wρ(V)→ N
with

d(x) :=

max
{
|xt1|, |xb1|, |xt3|, |xb3|

}
if x ∈ LRρ(V),

max
{
|xt|, |xb|

}
if x ∈ Sρ(V).

Let x, y ∈ Wρ(V) be two dominoes. The sticking of x and y is de�ned by the

1 Therewith
(
V ∗

V ∗

)
is just another term of V ∗ × V ∗.

3

mapping µρ : Wρ(V)×Wρ(V)→ Wρ(V) with

µρ(x, y) :=

x1

(
x2 ·

[
u
v

]
ρ
· y2

)
y3 if x ∈ LRρ(V), y ∈ LRρ(V),

x3 · y1 =
[
u
v

]
ρ
,

x1

(
x2 ·

[
u
v

]
ρ

)
w if x ∈ LRρ(V), y ∈ Sρ(V),

x3 · y =
[
u
v

]
ρ
· w,w ∈ Sρ(V),

w
([

u
v

]
ρ
· x2

)
x3 if x ∈ Sρ(V), y ∈ LRρ(V),

x · y1 = w ·
[
u
v

]
ρ
, w ∈ Sρ(V),

unde�ned otherwise.

Because µρ is associative, we write x ·ρ y instead of µρ(x, y).

A sticker system is a construct

γ = (V, ρ, A,D)

with an alphabet V , a symmetrical binary relation ρ ⊆ V × V , a �nite set
A ⊆ LRρ(V) and a �nite set D ⊆ Wρ(V) ×Wρ(V). The relation ρ is called
complementarity of V . The elements of A are called axioms and the elements
of D are called rules.

Let x, y ∈ Wρ(V) be two dominoes. We write x→γ y if and only if there is a
rule (u, v) ∈ D with y = u ·ρ x ·ρ v. We write x →k

γ y for x = x0 →γ x1 →γ

x2 →γ · · · →γ xk = y with k ∈ N and xi ∈ Wρ(V) for 0 ≤ i ≤ k or rather
x→∗γ y if and only if there is such a k and call this a derivation if and only if
x ∈ A and a complete derivation if and only if it is y ∈WK ρ(V), additionally.

Let C0(γ) := A and Ck(γ) :=
{
y ∈ Wρ(V) : ∃x ∈ Ck−1(γ) : x→γ y

}
with

k ∈ N and k ≥ 1. C∗(γ) :=
⋃
k∈NC

k(γ) denotes the set of dominoes generated
by γ, LM (γ) := C∗(γ) ∩WK ρ(V) the language of molecules generated by γ
and L(γ) := {xt : x ∈ LM (γ)} the language generated by γ.

It is ε 6∈ L(γ) for every sticker system γ = (V, ρ, A,D). Now we extend the

de�nition of sticker systems and allow
(
ε
ε

)
∈ A. Thereby we have to ensure,

that this special axiom will never be used for derivations. It is ε ∈ L(γ) if and

only if
(
ε
ε

)
∈ A.

A rule (u, v) ∈ D is called simple if and only if both dominoes are simple,
left-sided if and only if v = ε, right-sided if and only if u = ε and one-sided
if and only if it is left-sided or right-sided. A derivation x0 →∗γ xk is called
delay bounded by the bound d ∈ N if and only if d(xi) ≤ d for 0 ≤ i ≤ k. A

4

sticker system γ = (V, ρ, A,D) is called simple if and only if all rules of D are
simple, one-sided if and only if all rules in D are one-sided, regular if and only
if all rules in D are right-sided and with bounded delay if and only if there is
a constant d ∈ N, such that for every domino x ∈ LM (γ) there is at least one
delay bounded derivation with the delay bound d.

ASL(n) denotes the family of languages generated by sticker systems. Restric-
tion to sticker systems with bounded delay is denoted by substituting n by b.
Restrictions to simple, one-sided, regular, simple and one-sided or simple and
regular sticker systems are denoted by substituting A by S, O, R, SO or SR.

2.2 Chomsky grammars

By CS , CF , LIN and REG we denote the families of languages, which are
generated by context-sensitive, context-free, linear and regular Chomsky gram-
mars e.g. de�ned in [WW86, Section 4.1.1].

Lemma 2.1 ([WW86, Theorem 4.6]) REG ⊂ LIN ⊂ CF ⊂ CS .

3 Complementarity lemma

Lemma 3.1 (cf. [PRS98, Lemma 5.8]) For every sticker system γ = (V, ρ, A,D)
there exists an e�ectively constructable sticker system γ′ = (V, ρ′, A′, D′) with
L(γ) = L(γ′) and ρ′ = {(x, x) : x ∈ V }. Additionally, the transformation
from γ to γ′ preserves any property 2 of rules and derivations de�ned in this
publication or in [PRS98].

Proof. The proof is a transcription and generalization of the proof of [PRS98,
Lemma 5.8] concerning Watson-Crick �nite automata.

Let γ = (V, ρ, A,D) be a sticker system.

2 The transformation of γ to γ′ preserves the properties simple, one-sided, right-
sided, with bounded delay, . . .

5

The mapping λρ :
(
V ∗

V ∗

)
→ P

((
V ∗

V ∗

))
is de�ned as follows:

λρ

((
a

b

))
:=

{(
a
a

)}
if a ∈ V, b ∈ V, (a, b) ∈ ρ,{(

a
ε

)}
if a ∈ V, b = ε,{(

ε
ε

)}
if a = ε, b = ε,{(

ε
c

)
: (c, b) ∈ ρ

}
if a = ε, b ∈ V,

unde�ned otherwise.

If we de�ne the extensions of λρ on Sρ(V) and
[
V ∗

V ∗

]
ρ
by λρ(u·v) := λρ(u)·λρ(v),

on LRρ(V) by λρ(x1x2x3) := λρ(x1)×λρ(x2)×λρ(x3) and on sets of dominoes
by λρ(M) :=

⋃
w∈M λρ(w), then the transformation λρ of dominoes is structure-

preserving with no substitutions in the upper strand, and a basis α of the lower
strand migrates to a basis β if and only if β could be placed in the upper strand
directly over the basis α with respect to the complementarity ρ or rather if it
is already placed there.

Let γ′ = (V ′, ρ′, A′, D′) be the sticker system with V ′ := V , ρ′ := {(x, x) : x ∈
V ′}, A′ := λρ(A) and D′ :=

⋃
(u,v)∈D λρ(u)× λρ(v). Then L(γ) = L(γ′).

To this aim one can prove λρ(u ·ρ v) = λρ(u) ·ρ′ λρ(v) for any u, v ∈ Wρ(V) and
thereby show, that the transformation λρ is an homomorphism regarding the
sticking ·ρ and ·ρ′ . Thereafter, one can show the relation λρ(C

k(γ)) = Ck(γ′)
and consequently λρ(C

∗(γ)) = C∗(γ′) by using induction over k ∈ N. Because
λρ is structure-preserving with no substitutions in the upper strand, we can
conclude L(γ) = L(γ′).

4 Simple sticker systems are more powerful than one-sided/regular
sticker systems

Theorem 4.1 SSL(b) 6⊆ REG .

Proof. This result is already known, but not mentioned in [PRS98]. For the
sake of completeness, we will give a proof.

Let γ = (V, ρ, A,D) be the sticker system with V = {a, b}, ρ = {(x, x) : x ∈
V },A =

{[
a
a

]
,
[
b
b

]
,
[
aa
aa

]
,
[
bb
bb

]
,
(
ε
ε

)}
andD =

{((
a
ε

)
,
(
a
ε

))
,
((

b
ε

)
,
(
b
ε

))
,
((

ε
a

)
,
(
ε
a

))
,
((

ε
b

)
,
(
ε
b

))}
.

Then L(γ) ∈ SSL(b) \ REG .

6

Obviously, γ is a simple sticker system. Additionally, it is a sticker system with
bounded delay, because generations of the upper strand and lower strand are
independent of each other and so every derivation can be transformed into an
equivalent derivation with a delay bounded by d = 1 by resorting rule usages.
Consequently, there is L(γ) ∈ SSL(b).

Let S1 :=
{
w ∈ {a, b}∗ : w = wR

}
. For every word w ∈ S1 one can �nd a

suitable complete derivation of γ. On the other hand, one can show that every
complete derivation of γ is a derivation of a word w ∈ S1. Therewith we get
L(γ) = S1. One can also simply prove S1 6∈ REG by using the Pumping
Lemma for regular Chomsky grammars e.g. presented in [HU79, Lemma 3.1].

Theorem 4.2 ([PRS98, Theorem 4.1 + Theorem 4.4])

REG = OSL(b) = OSL(n) = RSL(b) = RSL(n).

Corollary 4.3

SSL(n) ⊇ SSL(b) 6⊆ REG = OSL(b) = OSL(n) = RSL(b) = RSL(n).

5 One-sided/regular sticker systems are more expressive than sim-
ple sticker systems

Let d ∈ N, then the order relations ≤ and < on Nd are de�ned by

x ≤ y ⇐⇒ ∀ 1 ≤ i ≤ d : x[i] ≤ y[i],

x < y ⇐⇒ x ≤ y and x 6= y.

Lemma 5.1 ([Dic13], [Hig52]) Let d ∈ N. For (Nd, <) there is no in�nite
set of pairwise incomparable elements of Nd.

Proof. This result was �rstly proved in [Dic13] and later generalized in [Hig52].
Nevertheless we give a proof, because this result is the core of Theorem 5.2.

We show by induction on the dimension d, that every set of pairwise incom-
parable elements of Nd is �nite.

Let d = 0. Because of Nd = {ε}, every subset of Nd is �nite.

7

Let d > 0. The empty set is �nite. Let M be a nonempty set of pairwise
incomparable elements of Nd. BecauseM is not empty, there exists an element
x ∈M .

Let T (i, k) := {y ∈M : y[i] = k} with i ∈ {1, ..., d} and k ∈ {0, ..., x[i]} and
let T =

⋃
i,k T (i, k). Obviously, T ⊆M . Let y ∈M , then there exists an i with

y[i] ≤ x[i]. Otherwise there would be x < y, a contradiction. Consequently,
y ∈ T (i, y[i]) ⊆ T . M = T is proved.

We have y[i] = k for all elements y of T (i, k). Consequently, all these elements
are located in a space with the dimension d − 1 (we hide the component i
by projection). Furthermore, all these elements are pairwise incomparable,
because of T (i, k) ⊆ T = M . By using the induction hypothesis we conclude
the �niteness of T (i, k).

The set T is a �nite union of �nite sets, because there exists only a �nite
amount of sets T (i, k) and any of these sets is �nite. Consequently, T and
therewith M is �nite.

Theorem 5.2 REG 6⊆ SSL(n).

Proof. Let L := {a}∗ ∪ {b}. Obviously, L ∈ REG .

Assume L ∈ SSL(n). Then there would exist a simple sticker system γ =
(V, ρ, A,D) with L(γ) = L and ρ = {(x, x) : x ∈ V } by Lemma 3.1.

The word b or rather the domino
[
b
b

]
ρ
can only be generated by an axiom.

Because all the other generatable complete dominoes only contain a's, we can
assume that all rules and all other axioms only contain a's as well, without
any restrictions.

In order to stick a rule d with a domino x, there must be ensured some structure
and complementary conditions. Because there exist only simple rules, there are
no structure conditions. Because all rules are rules over a one-letter alphabet
and the only axiom containing other letters does not have delays, there are
no complementary conditions as well. Consequently, at any time every rule
is applicable and the generated domino is independent from the order of rule
usages.

Let A = {a1, ..., an}, D = {d1, ..., dm} and γi := (V, ρ, {ai}, D) with 1 ≤ i ≤ n.
Then L(γ) =

⋃
i L(γi). Because this union is �nite and |L(γ)| =∞, there is a

γk with |L(γk)| =∞.

Let P be the set of all complete derivations of γk with �rst only usages of
rule d1, then rule d2, then Such a derivation can be described as a tuple

8

(c1, . . . , cm) ∈ N|D|. Thereby ci stands for the number of times rule di is used.
Consequently, we can assume P ⊆ N|D|, without any restrictions. By mol(x)
we denote the complete domino generated by the derivation x starting with
the axiom ak. If x and y are two derivations from P with x < y, then mol(y)
can be derived from mol(x).

For each complete domino x ∈ L(γk) there exists a corresponding derivation
in P . Because of |L(γk)| = ∞, it is |P | = ∞. Because of Lemma 5.1 there is
no in�nite set of pairwise incomparable elements of N|D|. Consequently, there
are two comparable elements x, y ∈ P with x < y. So we conclude mol(y) =(
ar

ar

)
·mol(x) ·

(
as

as

)
with r, s ∈ N, r 6= 0 or s 6= 0 and mol(x)→∗γk

mol(y).

The rules used to derivate mol(y) from mol(x), now applied to the axiom
[
b
b

]
ρ
,

constitute in γ a derivation of the domino
[
arbas

arbas

]
ρ
. Consequently, w = arbas ∈

L(γ) = L. A contradiction.

Remark 5.3 The relation L 6∈ SSL(b) with L := {a}∗ ∪ {b} can be shown
easier: Assume there exists a simple sticker system γ with L(γ) = L and with
a by d ∈ N bounded delay. Then, without any restrictions, there would be only
(2d+1)2 pairwise di�erent delays. Because of |L| =∞, |A| <∞ and |D| <∞,
there are arbitrarily long derivations, which are delay bounded by d. For every
derivation with at least a length of (2d + 1)2 + 1, there is at least one delay
which appears at least twice. Thereby, like in Theorem 5.2, we have found a
(lot of) delay restoring rule sequence(s) and therewith, we can derivate a word
w with w 6∈ L. A contradiction.

Remark 5.4 In [PRS98, Theorem 4.7] there is given a proof for Lbab ∈ REG\
SOSL(n) with Lbab := {banb : n ∈ N}. Analogously to Theorem 5.2, this
result can be improved to Lbab 6∈ SSL(n). In contrast to Theorem 5.2 now
there exist rules containing b's. Fortunately, the (maximal four) uses of these
rules per complete derivation can be moved to the end of the derivation and
therewith hidden from our attention, because of |D| < ∞ and analogously to
the restriction to one axiom.

Corollary 5.5

OSL(b) = OSL(n) = RSL(b) = RSL(n) = REG 6⊆ SSL(n) ⊇ SSL(b). 3

3 Beside the incomparability of SSL(b) and SSL(n) with OSL(b) = OSL(n) =
RSL(b) = RSL(n) = REG this even shows the incomparability of SSL(n) with LIN
and CF by application of [PRS98, Theorem 4.2].

9

6 Conclusions

Now we will give some results, which are direct or indirect conclusions of the
previous two sections. This collection isn't complete.

Conclusion 6.1 SOSL(b) 6⊆ SRSL(n). 4

Proof. Let Lab be the set {anb : n ∈ N}. Obviously, Lab ∈ SOSL(b).
Assume Lab ∈ SRSL(n). Then there would be a simple regular sticker system
γ with L(γ) = Lab. Analogous to Lbab 6∈ SSL(n) in Remark 5.4 one can show,

that the domino
[
bas

bas

]
or rather the word w = bas for a s ≥ 1 would be

derivable. A contradiction.

Conclusion 6.2 The language families SRSL(n) and SRSL(b) are not closed
under reversion.

Proof. Let Lba be the set {ban : n ∈ N}. Obviously, Lba ∈ SRSL(b). Accord-
ing to Lemma 6.1 there is Lcoba = Lab 6∈ SRSL(n).

Lemma 6.3 The language families ASL(x), SSL(x), OSL(x) and SOSL(x)
with x ∈ {b, n} are closed under reversion.

(Without a proof. A proof can be found by reversing axioms and rules.)

Conclusion 6.4 The language families SSL(x) and SOSL(x) with x ∈ {b, n}
are not closed under intersection.

Proof. Let Lbaba be the language Lbaba := {banba2m : n,m ∈ N} and Lbab :=
{banb : n ∈ N}. There is a simple, regular sticker system γ with bounded delay
with

γ =

(
{a, b}, {(a, a), (b, b)},

{[
bb

bb

]
,

[
b

b

](
a

ε

)
,

[
ba

ba

](
a

ε

)}
, D

)
,

D =

{((
ε

ε

)
,

(
ε

aa

))
,

((
ε

ε

)
,

(
aa

ε

))
,

((
ε

ε

)
,

(
ε

ab

))
,

((
ε

ε

)
,

(
b

ε

))}

and L(γ) = Lbaba. Therewith the termed language families contain the lan-
guage Lbaba. Because of Lemma 6.3 these language families even contain LRbaba.
But they do not contain Lbab = Lbaba ∩ LRbaba because of Remark 5.4.

4 The inclusions SRSL(b) ⊂ SOSL(b) and SRSL(n) ⊂ SOSL(n) are some direct
results of this conclusion.

10

Conclusion 6.5 The language families SSL(x), SOSL(x) and SRSL(x) with
x ∈ {b, n} are not closed under union, not closed under complement, not
closed under intersection with regular Chomsky languages and not closed under
concatenation (with a single letter).

Proof. We de�ne L0 := {a}∗ ∪ {b}, L1 := {banb : n ∈ N}, L2 := {a, b}∗,
L3 := {a}∗, L4 := {b}, L5 := {u · b · v : u, v ∈ {a, b}∗, |u · v| ≥ 1}, L6 := {ban :
n ∈ N}, L7 := L3∪L4, L8 := Lco5 , L9 := L2∩L7 and L10 := L6 ·L4. Obviously,
the termed language families contain L2, L3, L4, L5 and L6. (The proof of L5 ∈
SRSL(b) goes by construction of a simple, regular sticker system with bounded
delay. The construction is similar to that one in the proof of Conclusion 6.4.)
On the other hand they don't contain L0 = L7 = L8 = L9, because of Theorem
5.2, and because of Remark 5.4 they don't contain L1 = L10.

Conclusion 6.6 SSL(x) ∪OSL(x) ⊂ ASL(x). (x ∈ {b, n})

Proof. Let L1 := {a}∗∪{b}, L2 :=
{
w ∈ {c, d}∗ : w = wR

}
and L3 := L1∪L2

be three languages. Then there are L1 6∈ SSL(x) and L1 ∈ OSL(x). Addition-
ally, there are L2 ∈ SSL(x) and L2 6∈ OSL(x). Therewith, one can easily prove
L3 6∈ SSL(x) ∪ OSL(x). In contrast, it is L3 ∈ LIN ⊆ ASL(x) according to
[PRS98, Theorem 4.5].

7 Acknowledgments

We are grateful to Ludwig Staiger and Dietrich Kuske for their helpful advices
and suggestions.

References

[Adl94] L.M.Adleman. Molecular computation of solutions to combinatorial

problems. Science, Vol. 226, November 1994, 1021�1024.

[KPG98] L.Kari, G. P un, G.Rozenberg, A. Salomaa, S.Yu. DNA-Computing,

sticker systems and universality. Acta Informatica, 35, 5, 1998, 401�420.

[FPR98] R. Freund, G.P un, G.Rozenberg, A. Salomaa. Bidirectional sticker

systems. Third Annual Paci�c Conference on Biocomputing, Hawaii, 1998
/ World Scienti�c, Sigapore, 1998, 535�546.

[PR98] G.P un, G.Rozenberg. Sticker systems. Theoretical Computer Science,
204, 1998, 183�203.

11

[PRS98] G.P un, G.Rozenberg, A. Salomaa. DNA-Computing. New Computing

Paradigms. Springer, Berlin Heidelberg, 1998.

[Wei04] Peter Weigel. Ausdrucksstärke von Stickersystemen. Untersuchung der

Ausdrucksstärke von Stickersystemen durch Vergleich mit

Chomskygrammatiken und Mehrkopfautomaten. Diplomarbeit, Martin-
Luther-Universität Halle-Wittenberg, Institut für Informatik, Halle/Saale,
Oktober 2004.

[KW04] D.Kuske, P.Weigel. The rôle of the complementarity relation in Watson-

Crick automata and sticker systems. Developments in Language Theory:
8th International Conference, DLT 2004. Auckland, New Zealand,
December 13-17. Proceedings. / Lecture Notes in Computer Science,
Springer, Heidelberg, 3340, 2004, 272 � 283.

[Dic13] L.Dickson. Finiteness of the odd perfect and primitive abundant numbers

with n distinct prime factors. American Journal of Mathematics, 35, 1913,
413�426.

[Hig52] G.Higman. Ordering by divisibility in abstract algebras. Proceedings of
the London Mathematical Society, (3) 2(7), 1952, 326�336.

[WW86] K.Wagner, G.Wechsung. Computational Complexity. Deutscher Verlag
der Wissenschaften, Berlin, 1986.

[HU79] J. E.Hopcroft, J.D.Ullman. Introduction to automata theory, languages

and computation. Addison-Wesley, 1979.

12

