
Complexity analysis of sticker systems by means

of comparison with multihead �nite automata

Peter Weigel

Institut für Informatik, Fachbereich Mathematik/Informatik,
Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle/Saale, Germany

email: mail@stickersysteme.de, url: http://www.stickersysteme.de

Februar 2005

Abstract

The complexity analysis of sticker systems and Chomsky grammars done in [KPG98],
[FPR98], [PR98], [PRS98] and [WK05] are incomplete. Here we will extend these
analysis by multihead �nite automata and therewith close all open relations between
sticker language families and Chomsky language families.

Key words: dna-computing, sticker system, Chomsky grammar, multihead �nite
automaton, complexity analysis

1 Introduction

In [Adl94] L.M.Adleman gives a procedure for solving the Hamiltonian Path
Problem (HPP) based on DNA strands. This procedure, known as Adleman's
Experiment, can be considered as the basis of the concept of sticker systems,
which was introduced in [KPG98] as regular sticker systems. Sticker systems
with capabilities of synchronizing the extension on the left and right were men-
tioned �rst in [FPR98] as bidirectional sticker systems. In [PR98] both concepts
were merged to a new concept called sticker systems. The de�nition of sticker
systems from [PR98] and a lot of results and proofs from [KPG98], [FPR98]
and [PR98] were thereafter summarized and supplemented in [PRS98].

Sticker systems are one of many ways for theoretical analysis of properties and
capabilities of DNA strands, which are interesting for language, computation
or complexity theories. Because the constructs of sticker systems, which can be
considered as grammars, are completely di�erent from Chomsky grammars, an
explicit analysis is needed. In [KPG98], [FPR98], [PR98], [PRS98] and [WK05]

Preprint submitted to Elsevier Science 19 December 2009

there are a lot of proofs for relations between sticker language families among
themselves and Chomsky language families.

Here we will extend the concept of sticker systems presented in [PRS98] a little
bit and transfer some results from [PRS98] about sticker systems to the new
extended concept. Additionally, we will give evidence that sticker systems can
be simulated by 4-headed multihead �nite automata and we will investigate
how one can reduce the count of heads by restricting sticker systems. In this
framework, we will prove the relations LIN 6⊆ OSL(n), CF 6⊆ ASL(n) and
ASL(n) ⊂ CS and therewith close all open questions concerning the relation-
ship between sticker language families and Chomsky language families.

Beside the concept of sticker systems, in [PRS98] there were also presented
Watson-Crick �nite automata, Insertion-Deletion systems and di�erent kinds
of splicing systems (see [PRS98, Chapter 4, 5, 6, 7-11]). The roots of all these
concepts can be found in the �eld of DNA-Computing. But for all these con-
cepts there exists equivalent or similar concepts, which are already known `clas-
sic' concepts. Fore example, Insertion-Deletion systems can be considered as
Chomsky grammars G = (T,N, S, P) with productions (S,w), (uv, uwv) and
(uwv, uv) with u, v, w ∈ (T ∪ (N \ {S}))∗. According to [PRS98, Lemma 5.8]
Watson-Crick �nite automata are equivalent to (0.2)-headed simple oneway
multihead �nite automata. Inevitably, we have to ask for the existence of a
`classic' concept, which is equivalent or rather similar to sticker systems. We
will answer this question in Remark 5.2.

This work is based on the diploma thesis [Wei04] and only an abridged ver-
sion of the analysis given there. Some parts of the diploma thesis are already
included in the publications [KW04] and [WK05].

It must be mentioned, that we did two mistakes in [KW04]. At the end of the
proof of [KW04, Theorem 6] it must Ck(S ′) ∩ ρ∗ = Ck(S) ∩ ∆∗V be replaced
by Ck(S ′) ∩ ∆∗V = Ck(S) ∩ ρ∗. The second mistake was, that we omitted to
mention, that [KW04, Theorem 6] is a transcription and generalization of
[PRS98, Lemma 5.8]. The proof, that the complementarity ρ = {(x, x) : x ∈
V } su�ces for Watson-Crick �nite automata as well, see [KW04, Theorem
4], is a trivial generalization, because we can get this result by connecting
the constructions from [PRS98, Lemma 5.7], [PRS98, Lemma 5.8] and their
reversions. Additionally, it must be mentioned, that this omission was also
done in [Sem04], because [Sem04, Theorem 2.1] is a trivial generalization of
[PRS98, Lemma 5.12].

2

2 Basic de�nitions

By N we denote the set of non-negative integers. The set of all subsets of a
set A is denoted by P (A). The empty set is denoted by ∅.

An alphabet is a nonempty, �nite set of abstract symbols. The elements of an
alphabet are called letters. Let Σ be an alphabet. A word over Σ is a �nite
sequence of letters of Σ. Σ∗ denotes the set of all words over the alphabet Σ
including the empty word ε. We de�ne Σ+ := Σ∗ \ {ε}. A language L over the
alphabet Σ is a subset of Σ∗. The complement of a language L is denoted by Lco

and de�ned by Lco := {w ∈ Σ∗ : w 6∈ L}. Let k, i ∈ N and w = a1a2 . . . ak ∈ Σ∗

be a word. We call wR := ak . . . a2a1 the reversion, |w| := k the length and
w[i] := ai the i-th letter of w if 1 ≤ i ≤ k. Additionally, we de�ne w[i] := ε
for i < 1 or i > k. The concatenation of two words u and v with u = a1 . . . ak
and v = b1 . . . bm is de�ned by u · v := a1 . . . akb1 . . . bm.

Let k ∈ N. Σk denotes the k-fold cartesian product of a nonempty set Σ. The
elements of Σk are called vectors. Let Σ1,Σ2, . . . ,Σk be a �nite sequence of
nonempty sets and x = (x1, x2, . . . , xk) ∈ Σ1×Σ2× . . .×Σk. We call x[i] := xi
the i-th component of x if 1 ≤ i ≤ k.

Let k ∈ N and λ : Ak → B be a partial mapping from Ak into B. In general,
we de�ne the extension λ : P (A)k → P (B) by

λ(X1, X2, . . . , Xk) :=

λ(x1, x2, . . . , xk) :
xi ∈ Xi for 1 ≤ i ≤ k,

λ(x1, x2, . . . , xk) is de�ned

 .

The reversion AR and the concatenation A ·B of two languages A and B are
therewith de�ned.

2.1 Sticker systems

We now want to de�ne the concept of sticker systems analogously to [WK05].
Be aware of the di�erences in the de�nition of the dominoes.

Let V be an alphabet and ρ ⊆ V × V be a symmetrical binary relation.
There are

(
V ∗

V ∗

)
:=

{(
u
v

)
: u, v ∈ V ∗

}
the set of all pairs of words of V ∗ and[

V ∗

V ∗

]
ρ

:=
{(

u
v

)
∈
(
V ∗

V ∗

)
: |u| = |v|, (u[i], v[i]) ∈ ρ for 1 ≤ i ≤ |u|

}
the set of all

pairs of complementary words of V ∗. For
(
u
v

)
∈
[
V ∗

V ∗

]
ρ
we write

[
u
v

]
ρ
. The

concatenation
(
x1

x2

)
·
(
y1
y2

)
is
(
x1·y1
x2·y2

)
. Analogously, we write

[
x1·y1
x2·y2

]
ρ
for

[
x1

x2

]
ρ
·
[
y1
y2

]
ρ
.

3

The set of all dominoes Wρ(V) is de�ned by Wρ(V) := Sρ(V)∪LRρ(V) where

Sρ(V) :=
(
V ∗

V ∗

)
is called set of simple dominoes,Oρ(V) :=

{(
u
v

)
∈ Sρ(V) : u = ε or v = ε

}
is called set of one-stranded dominoes, Eρ(V) := Sρ(V) \ Oρ(V) is called set

of extended dominoes, LRρ(V) := Oρ(V)×
([

V ∗

V ∗

]
ρ
\
{[

ε
ε

]
ρ

})
×Oρ(V) is called

set of non-simple dominoes and WK ρ(V) :=
{(

ε
ε

)}
×
([

V ∗

V ∗

]
ρ
\
{[

ε
ε

]
ρ

})
×
{(

ε
ε

)}
is called set of complete dominoes. The domino

(
ε
ε

)
is also identi�ed by ε and

therewith we can write
[
x
y

]
ρ
instead of

(
ε
ε

)[
x
y

]
ρ

(
ε
ε

)
.

Let x ∈ LRρ(V) and y ∈ Sρ(V) be two dominoes. xt1, x
b
1, x

t
2, x

b
2, x

t
3, x

b
3, y

t

and yb denote the single components of x and y with x =
((

xt
1

xb
1

)
,
[
xt
2

xb
2

]
ρ
,
(
xt
3

xb
3

))
and y =

(
yt

yb

)
. Additionally, we call x2 :=

[
xt
2

xb
2

]
ρ
the centerpiece, x1 :=

(
xt
1

xb
1

)
the left and x3 :=

(
xt
3

xb
3

)
the right delay of x. We write x = x1x2x3 instead of

x = (x1, x2, x3). The words yt and xt := xt1 · xt2 · xt3 are called upper strand.
Analogously, yb and xb := xb1 ·xb2 ·xb3 are called lower strand. The letters of the
single components are called bases.

The structure of a domino x is de�ned by the mapping struct : Wρ(V) →
W{(],])}({]}), whereby struct(x) arises from x by substituting all bases con-
tained therein by].

The delay of a domino is de�ned by the mapping d : Wρ(V)→ N with

d(x) :=

max
{
|xt1|, |xb1|, |xt3|, |xb3|

}
if x ∈ LRρ(V),

max
{
|xt|, |xb|

}
if x ∈ Sρ(V).

Let x, y ∈ Wρ(V) be two dominoes. The sticking of x and y is de�ned by the

4

mapping µρ : Wρ(V)×Wρ(V)→ Wρ(V) with

µρ(x, y) :=

x1

(
x2 ·

[
u
v

]
ρ
· y2

)
y3 if x ∈ LRρ(V), y ∈ LRρ(V),

x3 · y1 =
[
u
v

]
ρ
,

x1

(
x2 ·

[
u
v

]
ρ

)
w if x ∈ LRρ(V), y ∈ Sρ(V),

x3 · y =
[
u
v

]
ρ
· w,w ∈ Oρ(V),

w
([

u
v

]
ρ
· x2

)
x3 if x ∈ Sρ(V), y ∈ LRρ(V),

x · y1 = w ·
[
u
v

]
ρ
, w ∈ Oρ(V),

x · y if x ∈ Sρ(V), y ∈ Sρ(V),

unde�ned otherwise.

Because µρ is associative, we write x ·ρ y instead of µρ(x, y).

A sticker system is a construct

γ = (V, ρ, A,D)

with an alphabet V , a symmetrical binary relation ρ ⊆ V × V , a �nite set
A ⊆ LRρ(V) and a �nite set D ⊆ Wρ(V) ×Wρ(V). The relation ρ is called
complementarity of V . The elements of A are called axioms and the elements
of D are called rules.

Let x, y ∈ Wρ(V) be two dominoes. We write x →γ y i� there exists a rule
(u, v) ∈ D with y = u ·ρ x ·ρ v. We write x→k

γ y for x = x0 →γ x1 →γ x2 →γ

· · · →γ xk = y with k ∈ N and xi ∈ Wρ(V) for 0 ≤ i ≤ k or rather x →∗γ y
i� there exists such a k and call this a derivation i� x ∈ A and a complete
derivation i� it is y ∈WK ρ(V), additionally.

Let C0(γ) := A and Ck(γ) :=
{
y ∈ Wρ(V) : ∃x ∈ Ck−1(γ) : x→γ y

}
with

k ∈ N and k ≥ 1. C∗(γ) :=
⋃
k∈NC

k(γ) denotes the set of dominoes generated
by γ, LM (γ) := C∗(γ) ∩WK ρ(V) the language of molecules generated by γ
and L(γ) := {xt : x ∈ LM (γ)} the language generated by γ.

It is ε 6∈ L(γ) for every sticker system γ = (V, ρ, A,D). Now we extend the

de�nition of sticker systems and allow
(
ε
ε

)
∈ A. Thereby we have to ensure,

that this special axiom will never be used for derivations. It is ε ∈ L(γ) i�(
ε
ε

)
∈ A.

A rule (u, v) ∈ D is called extended i� at least one of the both components
is an extended domino, simple i� both dominoes are simple, one-stranded i�
both dominoes are one-stranded, left-sided i� v = ε, right-sided i� u = ε and

5

one-sided if it is left-sided or right-sided. A derivation x0 →∗γ xk is called delay
bounded by the bound d ∈ N i� d(xi) ≤ d for 0 ≤ i ≤ k. A sticker system
γ = (V, ρ, A,D) is called extended i� there exist at least one extended rule in
D, simple i� all rules of D are simple, one-sided i� all rules in D are one-sided,
regular i� all rules in D are right-sided and with bounded delay i� there exists
a constant d ∈ N, such that for every domino x ∈ LM (γ) there exists at least
one delay bounded derivation with the delay bound d.

ASL(n) denotes the family of languages generated by sticker systems. Restric-
tion to sticker systems with bounded delay is denoted by substituting n by b.
The prohibition of extended dominoes is denoted by pre�xing the symbol c,
which stands for classic. Restrictions to simple, one-sided, regular, simple and
one-sided or simple and regular sticker systems are denoted by substituting A
by S, O, R, SO or SR.

2.2 Chomsky grammars

By CS , CF , LIN and REG we denote the families of languages, which are
generated by context-sensitive, context-free, linear and regular Chomsky gram-
mars e.g. de�ned in [WW86, Section 4.1.1].

Lemma 2.1 ([WW86, Theorem 4.6]) REG ⊂ LIN ⊂ CF ⊂ CS .

2.3 Multihead �nite automata

Let k ∈ N, K := {1, . . . , k} and x, y ∈ Nk. The tuple y is called compression
of x, we write y = comp(x), i� the following two conditions are su�ced:

(1) ∀i, j ∈ K : x[i] ≤ x[j] ⇐⇒ y[i] ≤ y[j],
(2) ∀i ∈ K, y[i] 6= 0 : ∃j ∈ K : y[j] = y[i]− 1.

COMPk :=
{
comp(x) : x ∈ Nk

}
with k ∈ N is called set of k-compressions.

A multihead �nite automaton is a construct

A = (X,Z, s, F, T)

with an alphabet X, a �nite set Z, a symbol s ∈ Z, a �nite set F ⊆ Z
and a �nite set T ⊆ Z × V k × COMPk × Z × Mk with V := X ∪ {ε},
M := {−1, 0,+1} and k ∈ N. X is called input alphabet, V work alphabet, Z
set of states, s initial state, F set of �nal states, T set of transitions and k
count of heads. A multihead �nite automaton with k heads is called k-headed
multihead �nite automaton.

6

C(A) := X∗ × Z × Nk is called set of con�gurations 1 of A. A con�guration
x ∈ C(A) is called initial i� x ∈ Ci(A) := X∗ × {s} × {(1, . . . , 1)} or �nal i�
x ∈ Cf (A) := X∗ × F × Nk. Let x, y ∈ C(A) be two con�gurations with x =

(w, zx, ~hx) and y = (w, zy, ~hy). We write x `A y and call y next con�guration
of x i� there exists a transition 2 t = (z,~v,~c, q, ~m) ∈ T with zx = z, ∀i ∈
K : w[~hx[i]] = ~v[i], comp(~hx) = ~c, zy = q, ∀i ∈ K : ~hy[i] = min{u +

1,max{0, ~hx[i] + ~m[i]}}. We write x `uA y for x = x0 `A x1 `A x2 `A · · · `A
xu = y with u ∈ N and xi ∈ C(A) for 0 ≤ i ≤ k or rather x `∗A y i� there
exists such a u and call this a run i� x is initial or a successful run i� y is
�nal, additionally.

Let C0(A) := Ci(A) and Ck(A) :=
{
y ∈ C(A) : ∃x ∈ Ck−1(A) : x `A y

}
with

k ∈ N and k ≥ 1. C∗(A) :=
⋃
k∈NC

k(A) denotes the set of reachable con�gu-
rations, C∗f (A) := C∗(A)∩Cf (A) the set of reachable �nal con�gurations and

L(A) :=
{
c[1] : c ∈ C∗f (A)

}
the language accepted by A.

A k-headed multihead �nite automaton A = (X,Z, s, F, T) is called simple i�
for all transitions (z,~v,~c, q, ~m) ∈ T and for all ~r ∈ COMPk it is (z,~v, ~r, q, ~m) ∈
T , that means the relative head position detection isn't needed. For simpli�-
cation, we forget the component ~c or rather ~r and write (z,~v, q, ~m) ∈ T .

A oneway multihead �nite automaton is a multihead �nite automaton with
s + t heads (s, t ∈ N) positioning these heads together at a position p and
thereafter moving head 1 to s to the left (~m[i] ∈ {−1, 0}) and head s + 1 to
s+ t to the right (~m[i] ∈ {0,+1}). Let w be the input word, then we enforce
p = 1 for w = ε, p = 1 for s = 0 and p = |w| for t = 0, otherwise p is a
random integer from the interval [1, |w|]. We call such an automaton with s
left-running and t right-running heads a (s .t)-headed oneway multihead �nite
automaton.

AHLk denotes the family of languages accepted by k-headed multihead �nite
automata. Restriction to simple multihead �nite automata is denoted by sub-
stituting A by S. For s, t ∈ N we denote the family of languages accepted by
(s.t)-headed oneway multihead �nite automata by OHLs.t . Restriction to sim-
ple oneway multihead �nite automata is denoted by pre�xing the symbol S.
By unions over k, s or t we get the multihead languages AHL∗, SHL∗, OHLs.∗,
SOHLs.∗, OHL∗.t , SOHL∗.t , OHL∗.∗ and SOHL∗.∗.

1 A con�guration consists of the input word currently worked with, the current state
and the current positions of the k heads.
2 A transition describes changes of states or head positions. A multihead �nite
automaton goes into a state q and moves its heads in conformity with ~m, if it is
currently situated in state z, ~v describes the letters currently read by heads 1 to k
and ~c describes the current relative positions of the k heads to each other. The input
word w cannot be manipulated and the heads cannot go beyond the end marker ε.

7

Theorem 2.2 YHL0 .k = YHLk .0 . (k ∈ N, Y ∈ {O, SO})

(Without a proof. This result can be assumed as already known. The proof
uses the idea of backward simulation.)

At the basis of Theorem 2.2 we de�ne YHLt := YHL0 .t for Y ∈ {O, SO} and
t ∈ N ∪ {∗}. 3

Remark 2.3 The concept of multihead �nite automata with capabilities of
detecting relative head positions presented here is equivalent to the already
known concept of multihead �nite automata with capabilities of detecting head
coincidences. (This capability is also called `sensing'.).

3 Transcription of results about `classic' sticker systems to the
extended concept de�ned in section 2.1

A lot of results about multihead �nite automata without the capability of
relative head position detection can be transcripted or generalized to multi-
head �nite automata with the capability of relative head position detection.
This also works for sticker systems: Nearly all results about sticker systems
can be transcripted or rather generalized to the extended concept de�ned in
section 2.1. The modi�cations of the proofs are marginal and mostly obvious.
For illustration we will give some examples. This collection is not complete.

Lemma 3.1 ([WK05, Lemma 3.1]) For every sticker system γ = (V, ρ, A,D)
there exists an e�ectively constructable sticker system γ′ = (V, ρ′, A′, D′) with
L(γ) = L(γ′) and ρ′ = {(x, x) : x ∈ V }. Additionally, the transformation
from γ to γ′ holds for any property 4 of rules and derivations de�ned in this
publication or in [PRS98].

Proof. The proof of [WK05, Lemma 3.1] concerning cASL(n) can be gener-
alized to ASL(n). Therefor one have to extend the mapping λρ to Eρ(V) with

λρ
((

u
v

))
:= λρ

((
u
ε

))
· λρ

((
ε
v

))
.

Theorem 3.2 (comp. [PRS98, Theorem 4.2]) SRSL(n) 6⊆ CF .

3 In [WW86] the language family SHLk is denoted by 2 :k−NFA (or 2−NFA for k =
1). SHL∗ is equivalent to 2 :multi−NFA. Analogously, one have to replace SOHLk

by 1 :k−NFA (or 1−NFA for k = 1) and SOHL∗ by 1 :multi−NFA. For [Mon80] we
have to replace SHLk by NH (k) and for [YR78] SOHLk by Rk.
4 The transformation of γ to γ′ preserves the properties simple, one-sided, right-
sided, with bounded delay, . . .

8

Proof. Let γ = (V, ρ, A,D) be the sticker system with V = {a, b, c, z}, ρ =

{(x, x) : x ∈ V },A =
{[

z
z

]}
andD =

{((
ε
ε

)
,
(
a
ε

))
,
((

ε
ε

)
,
(
b
a

))
,
((

ε
ε

)
,
(
c
b

))
,
((

ε
ε

)
,
(
ε
c

))}
.

It is L(γ) ∈ SRSL(n) \ CF analogously to [PRS98, Theorem 4.2].

Theorem 3.3 ([PRS98, Theorem 4.1]) OSL(b) ⊆ REG .

Theorem 3.4 ([PRS98, Theorem 4.3]) ASL(b) ⊆ LIN .

Theorem 3.5 ([WK05, Theorem 5.2]) REG 6⊆ SSL(n).

4 Chomsky grammars and multihead �nite automata

We will now recollect some results about Chomsky language families and
multihead language families. Therewith we can get results about sticker lan-
guage families and multihead language families from results about sticker lan-
guage families and Chomsky language families (and conversely). For example
we can get the relations ASL(b) = SOHL1 .1 and OSL(b) = SOHL1 from
ASL(b) = LIN = SOHL1 .1 and OSL(b) = REG = SOHL1 .

In this framework, we have to remind some relations between multihead �nite
automata among themselves.

Theorem 4.1 ([Mon80], [YR78]) XHLk ⊂ XHLk+1 ⊂ XHL∗. (k ∈ N,
X ∈ {A, S,O, SO})

Theorem 4.2 ([YR78, Introduction]) OHL3 6⊆ SOHL∗.
5

Theorem 4.3 AHLk ⊆ SHLk+1 . (k ∈ N)

(Without a proof. This result can be assumed as already known. However, a
possible proof is given in [Wei04].)

Theorem 4.4

REG = XHL1 , (X ∈ {A, S,O, SO})
LIN = YHL1 .1 , (Y ∈ {O, SO})
CF 6⊇ SOHL2 ,

CS ⊃AHL∗.

Proof. Line 1 to 3 is already known.

5 Concluding from this theorem, we get SOHLk ⊂ OHLk for k ≥ 3.

9

Line 4 concludes from AHL∗ ⊆ SHL∗ = NL ⊂ NLINSPACE = CS according
to Theorem 4.3, [WW86, Theorem 13.2(8,space)], [WW86, Section 22.3] 6 and
[WW86, Theorem 12.15].

Theorem 4.5 ([WW86, Theorem 13.5(3)])

LIN 6⊆OHL∗,

CF 6⊆OHL∗.∗,

SHL2 6⊆OHL∗.∗.

Proof. Let S1 := {w ∈ {a, b}∗ : w = wR}. It is S1 ∈ LIN . According to
[WW86, Theorem 13.5] it is S1 6∈ SOHL∗. We can get S1 6∈ OHL∗ analogously.

Let S2 := S1 · S1 =
{
v · w ∈ {a, b}∗ : v = vR, w = wR

}
. It is S2 ∈ CF . Anal-

ogous to S1 6∈ OHL∗ it is S2 6∈ OHL∗.∗. Thereby we mainly make use of the
fact, that on every run on a word v · w one of the parts v and w is situated
completely on the left or right side.

It is S2 ∈ SHL2 . (Without a proof.)

5 Simulation of sticker systems by multihead �nite automata

Theorem 5.1 ASL(n) ⊆ OHL2 .2 .

Proof. In [PRS98, Chapter 5] there was presented the concept of Watson-
Crick �nite automata. By suitable extension of this concept, we can treat
sticker systems as special extended Watson-Crick �nite automata. In [PRS98,
Lemma 5.8] there is shown the equivalence of Watson-Crick �nite automata
and (0.2)-headed simple multihead �nite automata. By generalization of [PRS98,
Lemma 5.8] to extended Watson-Crick �nite automata and restriction to
sticker systems, we get the following proof.

Let γ = (V, ρ, A,D) be a sticker system with ρ = {(x, x) : x ∈ V }. The
(2.2)-headed oneway multihead �nite automaton A = (V, Z, s, F, T) works as
follows:

6 The language families NL and NLINSPACE are not de�ned in this publication,
because they are needed only here. In short, these are families of languages, which can
be accepted by Turing machines with one two-way input tape and one logarithmical
or rather linear space bounded work tape.

10

Initialization

All four heads are located at the absolute position 1. It will be gone
to the acceptance phase, if all four heads read the letter ε and there is
ε ∈ L(γ). Otherwise, a random position p will be guessed, head top-left
(1) and bottom-left (2) will be placed at position p, head top-right (3)
and bottom-right (4) will be placed at position p + 1 and it will be gone
to the phase of axiom selection.

Axiom selection

An arbitrary axiom x1x2x3 ∈ A will be chosen and saved in the form
(x1x2

(
ε
ε

)
, x3). Thereafter, it will be gone to the phase of rule and axiom

check.

Rule selection

An arbitrary rule (x, y) ∈ D will be chosen and saved. Thereafter, it will
be gone to the phase of rule and axiom check.

Rule and axiom check

Let the saved rule or axiom be (x, y). First, it will be considered domino
y ∈ Wρ(V):

(1) If y =
(
u
v

)
∈ Sρ(V), head top-right moves by |u| steps to the right and

ensures, that thereby word u is read. Analogously, head bottom-right
moves by |v| steps to the right and ensures, that thereby word v is
read. Informations about relative positions are irrelevant.

(2) If y = y1y2y3 ∈ LRρ(V), then it will be �rst considered y1, then y2

and then y3. For y1 and y3 it will be proceeded analogous to (1). Let

y2 =
[
u
u

]
ρ
. Head top-right and bottom-right move by |u| steps to the

right and ensure, that thereby word u is read. Additionally, it will be
ensured, that both heads are located one upon the other during the
whole check of y2.

Domino x is checked symmetrically to y, thereby head top-left and bottom-
left moves at the basis of x to the left. Thereafter, it will be gone to the
phase of acceptance or the phase of rule selection.

Acceptance

The input will be accepted, if all four heads read the letter ε.

Let C(γ) := {(x, y, z) : x ∈ Sρ(V), y ∈ LRρ(V), z ∈ Sρ(V), x · y · z ∈WK ρ(V)}
be the set of con�gurations of γ. Let A := C(γ) ∩ (Sρ(V)× C∗(γ)× Sρ(V))
and B := C∗(A)∩(V ∗ × {q} × N4) be two sets with q as exit point of the phase
of rule and axiom check. Let λ : C(γ) → C(A) be a function, which builds a

11

con�guration of the multihead �nite automaton A from a con�guration of the
sticker system γ with

λ ((x, y, z)) :=
(
xt · yt · zt, q,

(
|xt|, |xb|, |xt · yt|+ 1, |xb · yb|+ 1

))
.

One can now prove the relation λ(A) = B by induction over the count of rule
usages and thereby show, that every derivation of the sticker system γ can
be simulated by the automaton A and on the other hand every run of the
automaton A can be considered as an simulation of a derivation of the sticker
system γ. By including the acceptance condition and the behavior on the case
ε ∈ L(γ) we get L(A) = L(γ).

Remark 5.2 Probably, (2.2)-headed oneway multihead �nite automata are
able to accept more than sticker systems, because rule usage can be better
controlled by states. However, sticker systems are evidently very similar to
(2.2)-headed oneway multihead �nite automata.

Conclusion 5.3 SSL(n) ⊆ SOHL2 .2 .

Proof. Theorem 5.1 gives a proof for the inclusion ASL(n) ⊆ OHL2 .2 . By
restriction to simple sticker languages, we don't need the capability of rela-
tive head position detection any more. Consequently the (2.2)-headed oneway
multihead �nite automaton constructed there is simple. Thus, it is SSL(n) ⊆
SOHL2 .2 .

Theorem 5.4 OSL(n) ⊆ OHL2 .

Proof. Let γ = (V, ρ, A,D) be a sticker system with ρ = {(x, x) : x ∈
V }. Because of OSL(n) ⊆ ASL(n) and according to Theorem 5.1, for every
one-sided sticker system exists an equivalent (2.2)-headed oneway multihead
�nite automaton. By reconstructing this automaton we get the following (0.2)-
headed oneway multihead �nite automaton A = (V, Z, s, F, T):

Initialization

Both heads are located at the absolute position 1. It will be gone to the
acceptance phase, if both heads read the letter ε and there is ε ∈ L(γ).
Otherwise, it will be gone to the phase of left-sided rule selection or axiom
selection.

Left-sided Rule selection

An arbitrary left-sided rule (x, ε) ∈ D will be chosen and saved. There-
after, it will be gone to the phase of rule and axiom check.

12

Right-sided Rule selection

An arbitrary right-sided rule (ε, x) ∈ D will be chosen and saved. There-
after, it will be gone to the phase of rule and axiom check.

Axiom selection

An arbitrary axiom x ∈ A will be chosen and saved in the form (ε, x).
Thereafter, it will be gone to the phase of rule and axiom check.

Rule and axiom check

Let the saved rule or axiom be (x, ε) or (ε, x) with x ∈ Wρ(V):

(1) If x =
(
u
v

)
∈ Sρ(V), head top moves by |u| steps to the right and

ensures, that thereby word u is read. Analogously, head bottom moves
by |v| steps to the right and ensures, that thereby word v is read.
Informations about relative positions are irrelevant.

(2) If x = x1x2x3 ∈ LRρ(V), then it will be �rst considered x1, then x2

and then x3. For x1 and x3 it will be proceeded analogous to (1). Let

x2 =
[
u
u

]
ρ
. Head top and bottom move by |u| steps to the right and

ensure, that thereby word u is read. Additionally, it will be ensured,
that both heads are located one upon the other during the whole
check of x2.

Thereafter, it will be gone to the phase of left-sided rule selection, axiom
selection, right-sided rule selection or acceptance. It can only be gone to
the phase of left-sided rule selection or axiom selection, if the saved rule
was left-sided. Analogously, it can only be gone to the phase of right-sided
rule selection or acceptance, if the saved rule was right-sided or an axiom.

Acceptance

The input will be accepted, if both heads read the letter ε.

Similarly to Theorem 5.1 one can show the relation L(γ) = L(A) and there-
with OSL(n) ⊆ OHL2 .

Conclusion 5.5 SRSL(n) ⊆ SOHL2 .

Proof. Theorem 5.4 gives evidence to OSL(n) ⊆ OHL2 . By restricting to sim-
ple one-sided sticker languages, the relative head position detection will only
be needed for the axiom check. By restricting to simple right-sided sticker
systems, we don't need this capability any longer, because the axiom selec-
tion and check are done directly after the initialization phase. Thus we get
SRSL(n) ⊆ SOHL2 .

13

6 Conclusions

Now we will give some results, which are direct or indirect conclusions of the
previous section. This collection isn't complete.

Corollary 6.1 SOHL1 .1 = LIN 6⊆ OSL(n).

Proof. Because of Theorem 4.4, Theorem 4.5, de�nition of multihead lan-
guage families and Theorem 5.4 we get SOHL1 .1 = LIN 6⊆ OHL∗ ⊇ OHL2 ⊇
OSL(n).

Corollary 6.2 CF 6⊆ ASL(n), SHL2 6⊆ ASL(n).

Proof. Because of Theorem 4.5, de�nition of multihead language families and
Theorem 5.1 we get CF 6⊆ OHL∗.∗ or rather SHL2 6⊆ OHL∗.∗ and OHL∗.∗ ⊇
OHL2 .2 ⊇ ASL(n).

As a conclusion of Corollary 6.2 we get ASL(n) ⊂ CS . That means, there exists
at most one (known) Chomsky language, which is not a sticker language. The
following result even shows, that only a few Chomsky languages are sticker
languages.

Corollary 6.3 ASL(n) ⊂ CS .

Proof. It is ASL(n) ⊆ OHL2 .2 ⊂ AHL4 ⊂ AHL∗ ⊂ CS because of Theorem
5.1, de�nition of multihead language families, Theorem 4.5, Theorem 4.1 and
Theorem 4.4.

Conclusion 6.4 The language families cASL(x) and ASL(x) with x ∈ {b, n}
are not closed under concatenation.

Proof. Because of [WK05, Theorem 4.1] and Corollary 6.2 the termed sticker

language families contain S1 :=
{
w ∈ {a, b}∗ : w = wR

}
but they don't contain

S2 := S1 · S1 =
{
v · w ∈ {a, b}∗ : v = vR, w = wR

}
.

7 Acknowledgments

I am grateful to Ludwig Staiger, Dietrich Kuske and Jens Keilwagen for their
helpful advices and suggestions.

14

References

[Adl94] L.M.Adleman. Molecular computation of solutions to combinatorial
problems. Science, Vol. 226, November 1994, 1021�1024.

[KPG98] L.Kari, G. P un, G.Rozenberg, A. Salomaa, S.Yu. DNA-Computing,
sticker systems and universality. Acta Informatica, 35, 5, 1998, 401�420.

[FPR98] R. Freund, G.P un, G.Rozenberg, A. Salomaa. Bidirectional sticker
systems. Third Annual Paci�c Conference on Biocomputing, Hawaii, 1998
/ World Scienti�c, Sigapore, 1998, 535�546.

[PR98] G.P un, G.Rozenberg. Sticker systems. Theoretical Computer Science,
204, 1998, 183�203.

[PRS98] G.P un, G.Rozenberg, A. Salomaa. DNA-Computing. New Computing
Paradigms. Springer, Berlin Heidelberg, 1998.

[Wei04] Peter Weigel. Ausdrucksstärke von Stickersystemen. Untersuchung der
Ausdrucksstärke von Stickersystemen durch Vergleich mit
Chomskygrammatiken und Mehrkopfautomaten. Diplomarbeit, Martin-
Luther-Universität Halle-Wittenberg, Institut für Informatik, Halle/Saale,
Oktober 2004.

[KW04] D.Kuske, P.Weigel. The rôle of the complementarity relation in Watson-
Crick automata and sticker systems. Developments in Language Theory:
8th International Conference, DLT 2004. Auckland, New Zealand,
December 13-17. Proceedings. / Lecture Notes in Computer Science,
Springer, Heidelberg, 3340, 2004, 272 � 283.

[WK05] P.Weigel, J.Keilwagen. Incomparability of simple and one-sided/regular
sticker languages. www.stickersysteme.de, Februar 2005.

[Ros66] A. L.Rosenberg. On multihead �nite automata. IBM J.R. and D., 10, 1966,
388�394.

[Har72] J. Hartmanis. On Non-Determinancy in Simple Computing Devices. Acta
Informatica, 1, 1972, 336-344.

[Iba73] O.H. Ibarra. On Two-Way Multihead Automata. Journal of Computer and
System Sciences, 7, 1, February 1973, 28�36.

[IK75] O.H. Ibarra, C. E.Kim. On 3-head vesus 2-head �nite automata. Inform.
Control, 4, 1975, 193�200.

[YR78] A.C.Yao, R. L.Rivest. k+1 heads are better then k. Journal of then ACM,
25, 2, April 1978, 337�340.

[Mon80] B.Monien. Two-Way Multihead Automata Over A One-Letter Alphabet.
R.A.I.R.O. Theoretical Informatics, 14, 1, 1980, 67�82.

[Hro83] J.Hromkovic. One-way multihead deterministic �nite automata. Acta
Informatica, 19, 4, 1983, 377�384.

15

[DH83] P.Duris, J. Hromkovic. One-way simple multihead �nite automata are not
closed under concatenation. Theoretical Computer Science, 27, 1983, 121�
125.

[Sem04] J.M. Sempere.A representation theorem for languages accepted byWatson-
Crick �nite automata. EATCS Bulletin 83, June 2004, 187�191.

[WW86] K.Wagner, G.Wechsung. Computational Complexity. Deutscher Verlag
der Wissenschaften, Berlin, 1986.

16

